

SDMS DocID

563916

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Jardi Company Property

BENNINGTON, VERMONT

Prepared For

LAURENCE LEVY, INC. TRUSTEE

700 Centre, Suite 901

700-704: East Franklin: Street

Richmond Virginia

February 1991

Webrant Engineering Comoration

Burlington: Vermont

Environmental Engineers & Scientists & Constructors

February 21, 1991

Wehran Engineering Corporation

Chace Mill 3-20 1 Mill Street Burlington, Vermont 05401

Tel: 802-658-6884 Fax: 802-658-5014

Laurence H. Levy, Trustee 700 East Franklin Street Suite 901 Richmond, VA 23219

Re:

Phase 2 Environmental Site Assessment

Jard Company Property, Bennington, Vermont

WE Project No. 00272.01

Dear Mr. Levy:

Wehran Engineering is pleased to provide you the enclosed Phase 2 Environmental Site Assessment. The environmental assessment provides the findings from the investigation conducted at the Jard Company located in Bennington, Vermont.

If you have any questions, please call our office.

Sincerely,

WEHRAN ENGINEERING CORPORATION

Indrea & Osch

John A. Malter

AEA/wig

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT JARD COMPANY PROPERTY BENNINGTON, VERMONT

Prepared For
LAURENCE LEVY, INC. TRUSTEE
700 Centre, Suite 901
700-704 East Franklin Street
Richmond, Virginia

February 1991

Wehran Engineering Corporation Burlington, Vermont

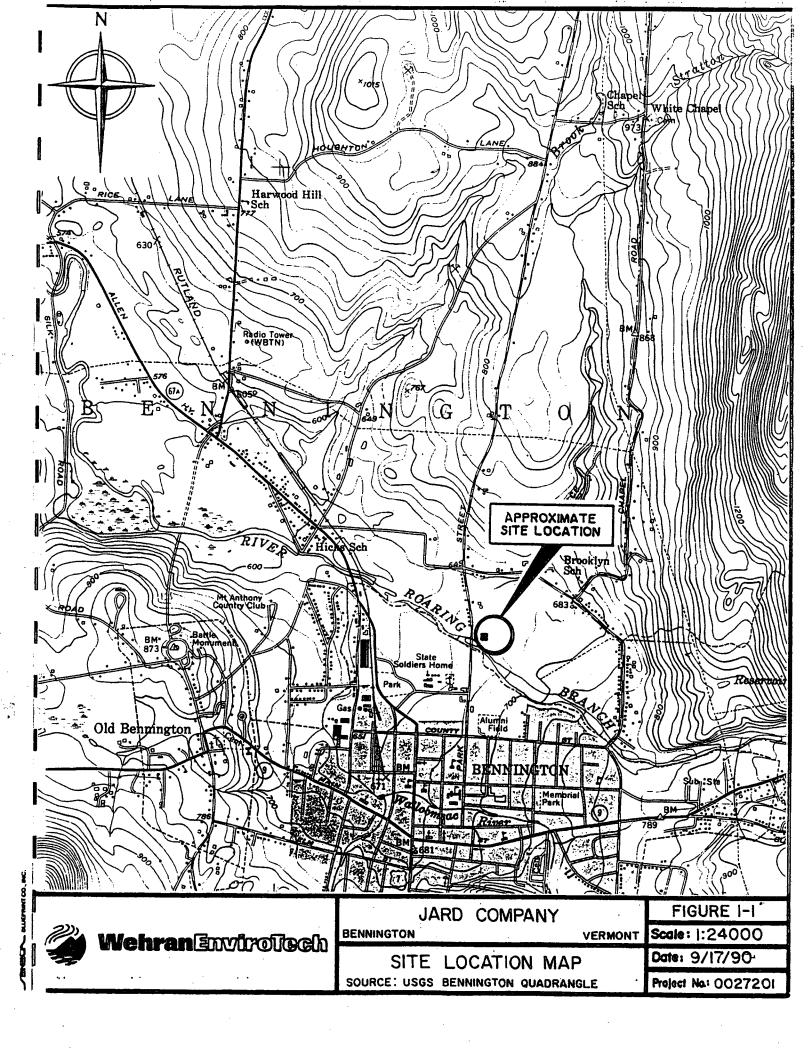
Environmental Engineers • Scientists • Constructors

TABLE OF CONTENTS

			Page <u>Number</u>
1.0	INTF	RODUCTION	1-1
	1.1	PREVIOUS WORK	1-1
	1.2	OBJECTIVES	1-2
2.0	GEO	PHYSICAL SURVEY	2-1
3.0	SOIL	SAMPLING	3-1
	3.1	OFFSITE SURFICIAL SOILS	3-1
	3.2	ONSITE SOIL SAMPLING (Test Pits)	3-1
4.0	GRO	DUNDWATER SAMPLING	4-1
	4.1	WATER LEVEL MEASUREMENTS	4-2
5.0	RES	ULTS AND CONCLUSIONS	5-1
6.0	REC	OMMENDATIONS	6-1

LIST OF TABLES

Table <u>No.</u>		and the second s	Follows Page No.
5-1	Test Pit Soils	s - Chemical Data Summary	5-1
5-2	Test Pit Wat	ter Samples - Chemical Data Summary	5-1
5-3	Groundwate	er Chemical Data Summary	5-1
5-4	Groundwate	er (Oil Phase) Chemical Data Summary	5-1
		LIST OF FIGURES	
Figure <u>No.</u>			Follows Page No.
1-1	Site Location	n Map	1-1
2-1	Geophysical	I Traverse Lines	2-1
3-1	Soil and Gro	oundwater Sampling Locations	3-1
APPE	NDICES		
Apper	ndix A -	Test Pit Logs	
Apper	ndix B -	Monitoring Well Construction Diagrams	
Apper	ndix C -	Test Pit Soil Chemical Data	
Apper	ndix D -	Test Pit Water Quality Data	
Apper	ndix E -	Groundwater Chemical Data	


1.0 INTRODUCTION

Wehran Engineering has completed a Phase 2 environmental site assessment for a 12 acre parcel belonging to the Jard Company, Inc., on Bowen Road in Bennington, Vermont. Phase 2 work included a ground-penetrating radar survey of the site, offsite surficial soil sampling, onsite excavation of test pits and installation of groundwater monitoring wells, and evaluation of the results of these tasks.

1.1 PREVIOUS WORK

The Jard Company is located on Bowen Road in Bennington, Vermont (Figure 1-1). The company owns 34 acres of property, including the 12 acres (containing the facility) which are the focus of this assessment. Jard was established in 1969 as a manufacturer of small capacitors, small non-fluid transformers, and small motors. Up to 250 employees (in three shifts) have been involved in plant operations. The plant ceased operations in early 1989.

In order to investigate the potential extent of contamination, Wehran was requested to conduct a Phase 1 environmental investigation in the fall of 1989. That assessment included an initial site visit, review of applicable State and local files, a site walkover, soil and water sampling and analyses, interviews with available plant personnel, and evaluation of the results. The assessment was discussed in "Draft Environmental Site Assessment for the Jard Company Property in Bennington, Vermont," prepared by Wehran in November 1989. The principal contaminants detected in onsite soils included Acochlor-1242, Bis (2-ethylhexyl) phthalate, zinc, trichloroethane, and trichloroethene. Because contamination was detected on site, a Phase 2 assessment was recommended.

1.2 OBJECTIVES

The objectives of the Phase 2 site assessment were to:

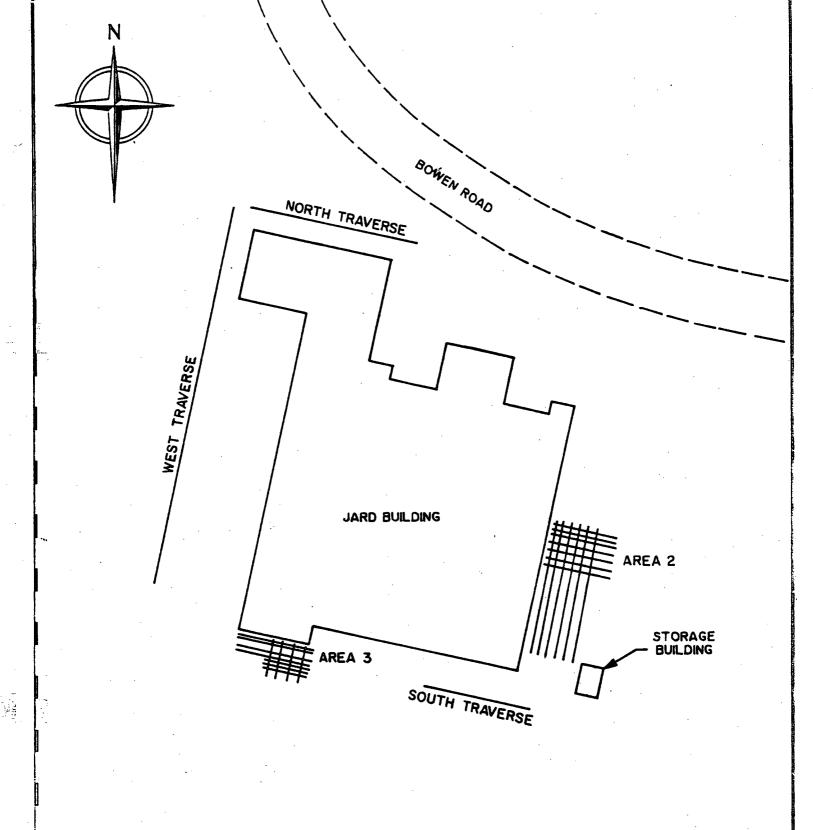
- determine the vertical extent of contamination at known areas of surficial soil contamination;
- better define the horizontal extent of soil contamination; and
- provide initial data on the extent, if any, of groundwater contamination. This task will include defining the direction of groundwater flow from the site.

In order to meet these objectives, a scope of work was developed by Wehran and reviewed by the Vermont Department of Environmental Conservation (DEC). The tasks proposed in this scope were designed to provide data related to each of the stated objectives of the Phase 2 assessment. Specifically, the following tasks were proposed:

- Geophysical survey. Ground-penetrating radar (GPR) and electromagnetic induction (EMI) were proposed to help map shallow subsurface features, including buried pipes and other man-made objects, as part of an overall assessment of potential migration pathways on site. Because of the occurrence of numerous overhead and buried cables and wires and buried pipes, all of which interfere with an EMI signal, the EMI survey was not conducted. Discussion of the GPR survey is presented in Chapter 2.0 of this report.
- Offsite surficial soil sampling. The objective of this task was to provide data to test the assumption that surficial soils contamination is limited to the site itself. Surficial soils on adjacent open land to the south and west of the facility were collected and sampled. Chapter 3.1 discusses this task.

- Onsite soils. To estimate the extent and depth of contamination, six test pits were excavated. Locations were chosen to be either near known or suspected areas of surficial contamination. Where the water table was encountered, water samples were also collected.
 Chapter 3.2 discusses this task.
- Groundwater. Five monitor wells were installed to obtain groundwater samples for chemical analysis and to obtain water levels for estimating the direction of groundwater flow. This task is discussed in Chapter 4.0 of this report.

2.0 GEOPHYSICAL SURVEY


The purpose of the geophysical survey was to map shallow subsurface features, including buried pipes and other man-made objects, as part of an overall assessment of potential migration pathways on site.

The data were collected using a Geophysical Survey Systems Model SIR-8 ground-penetrating radar (GPR) unit coupled to a 50 megahertz antenna. The system operates by systematically emitting a very high frequency pulse of electromagnetic energy into the subsurface from a transceiving antenna, recording backscattered energy from the subsurface between pulse emissions. Backscattering occurs as the downward going pulse encounters contrasts in dielectric constants in the subsurface. Such contrasts are common at soil/soil, soil/rock, and soil/manmade object boundaries.

The system is most effective in dry, low conductivity environments (such as dry sand), but effective depth of investigation can be severely inhibited by high conductivity conditions (salty or brackish water, clays). Geologic materials in the site area are primarily thin, coarse-grained stratified glacial drift and stream gravels (A.L. Hodges, Jr., 1966, Groundwater Favorability Map of the Batten Kill, Walloomsac River, and Hoosic River Basins). The GPR was expected to perform effectively on the basis of this information, and very good effective depth of investigation was obtained during the survey.

The GPR traverses ran on site are shown on Figure 2 1. Areas identified in the Phase 1 investigation as possible underground conduits related to the concrete structures (dry wells) were examined with a gridwork of parallel GPR traverses. The peripheral areas were examined with a single continuous reconnaissance traverse to identify any subsurface targets not expected from examination of available site plans.

In Area 2 (see Figure 2-1), several discrete subsurface targets were noted during the GPR survey. Data from this area indicate a linear feature (less than one foot deep) that may represent either a pipe or electrical conduit near the center of

	JARD COMPANY	FIGURE 2-I
2) Illaham Bandach	JARD COMPANT	Scale: 1" = 80"
Wehran Envirolech		Date: 9/17/90
	GEOPHYSICAL TRAVERSE LINES	Project Na: 0027201

the area. A shallow zone (0 - 4 feet deep) of attenuated signal returns is also evident toward the southerly part of the area in the vicinity of the Drum Storage Area.

Area 3 (designation refers to sampling identification from the Phase 1 report) includes a dry well and two standpipes. The standpipes are suspected to be attached to a buried tank based on information presented in the Phase 1 report. This area was examined by a series of parallel GPR traverses at about five foot separation in both north-south and west-east directions. Locations along each traverse were identified by markers introduced onto the recordings at ten-foot intervals as the recordings were made.

Several discrete subsurface targets were noted during the GPR survey in Area 3. The character of the signals suggested that pipes or other small diameter metallic objects are present in the subsurface:

- A 12-inch pipe entering the dry well from the direction of the building at two to three foot depth does not appear on the GPR recordings. A large metallic target of this nature should clearly show on the GPR recordings. Because the pipe did not appear on the GPR recordings, it is possibly not steel. Clay or concrete pipes in soil sometimes do not present sufficient dielectric contrast to result in significant backscattering of the electromagnetic signals.
- Between the building and the dry well, the GPR signal was attenuated between a depth of 10 and 15 feet. This signal change could theoretically be the result of either concentrations of organic compounds or of significant excavation in the area.
- West of the dry well, backscattering of the GPR signal from a two-foot deep soil horizon is interrupted and the signal strength is strongly attenuated. This effect is assumed related to a mechanically disturbed soil (excavated and replaced, or mixed).

• The GPR recordings near the stand pipes did not clearly indicate a buried tank. Based on information in the Phase 1 report, however, it is believed that a small storage tank is likely present below this area.

Additional traverses were run in peripheral areas surrounding the site. The traverse north of the building showed no unusual features. The traverse along the southern side of the building showed a small metallic target at about two foot depth about 55 feet from a power pole, and general signal attenuation at shallow depth in the vicinity of the Drum Storage Area.

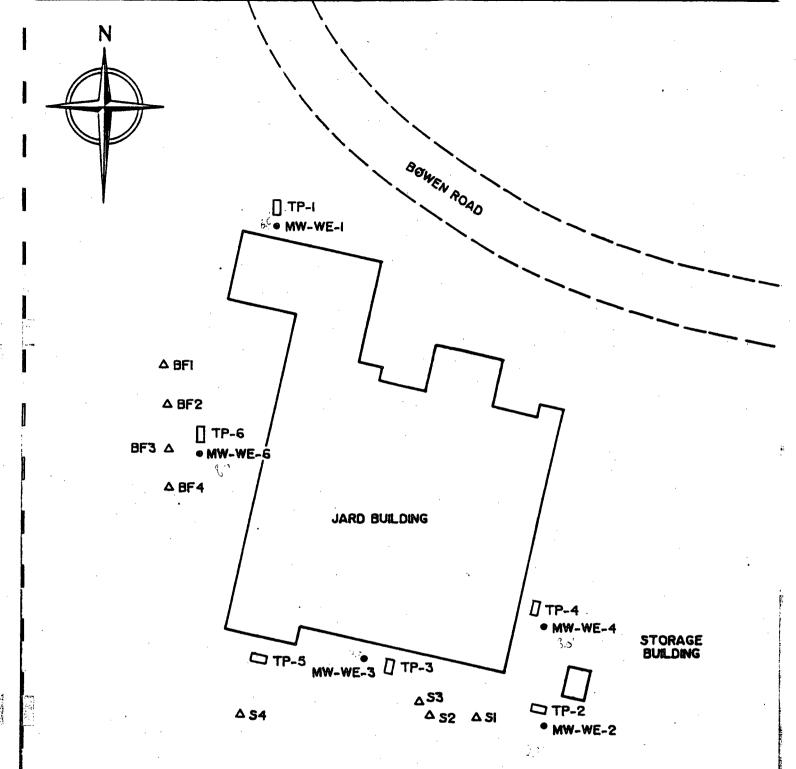
A GPR traverse in the area west of the building showed several clear stratigraphic interfaces in the subsurface, and signal returns suggestive of small boulders resting on the interfaces or within stratigraphic units (10-15 feet depth).

3.0 SOIL SAMPLING

Because of the contamination found on site during the Phase 1 investigation, it was recommended that offsite soils on adjacent property be sampled and that additional onsite samples be collected to better estimate the extent and depth of contamination. The locations of these samples are shown on Figure 3-1.

3.1 OFFSITE SURFICIAL SOILS

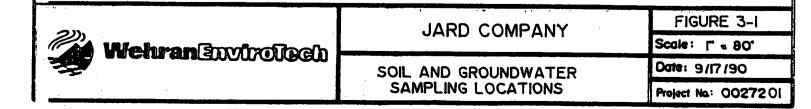
Soil samples were collected from adjacent property potentially downgradient to the west and east of the Jard facility. A soil sample was also collected from the storm drain exiting the site on the northwest boundary. All samples were collected using a hand trowel and shovel. After each sample was collected, the equipment was rinsed with methanol and then deionized water.


Four samples of the surface soil material from the edge of the Little League ball field west of the facility were collected. These locations are labeled as BF-1, BF-2, BF-3, and BF-4 on Figure 3-1. These samples were composited and a single soil sample was sent for laboratory analysis of PCB (EPA Schedule 608).

On the south side of the facility, between the facility and the creek, four soil samples (S1, S2, S3, and S4) were collected and composited. A single soil sample was sent for laboratory analysis for PCB.

On the northwest property boundary, sediment in a storm drain pipe in a ditch exiting the site was sampled.

3.2 ONSITE SOIL SAMPLING


Six test pits were excavated to estimate the extent and depth of contamination. Locations of the test pits were chosen to be near either known or suspected areas of contamination. In each test pit, soils were sampled and composited into shallow (0 to 3 feet) and deeper (3 feet to water table) samples. If the water table was relatively deep (greater than 6 feet), a third intermediate

LEGEND

- Δ SOIL SAMPLING LOCATION

 TEST PIT LOCATION
- MONITORING WELL LOCATION

sample was collected. Each soil sample was sent to the laboratory for analysis for volatile and semi-volatile organic compounds (EPA 601 and 602), phthalates (EPA 606), PCB's (EPA 608), and zinc. In test pits where the water table was encountered and a sample was obtainable (TP-1, TP-2, TP-3, and TP-5), unfiltered water samples were collected for the same suite of analyses. All water samples were high in sediment. Test pit logs are presented in Appendix A. All test pits encountered sand, gravel, and boulders. Field readings using an HNU photoionization detector were all near the baseline levels (less than one part per million).

Test Pit 1. On the northwest side of the facility, thin fill unit overlying rounded sand, gravel, and boulders. Water table was encountered at 7.5 feet. Three soil composites (TP-1A, TP-1B, and TP-1C) and a water sample (TP-1GW) were collected.

Test Pit 2. On the southeast side of the building near the drain storage area. Sand and gravel with some boulders. Water table at 2.5 feet. One soil composite (TP-2A) and a water sample (TP-2GW) were collected.

Test Pit 3. On the south side of the building. Some fill overlying sand and cobbles. Strong organic odor, described in the field as similar to a leachfield. Dark black, oily free product visible at about 3.5 feet deep, on top of the water table surface. One soil composite (TP-3A) and a water sample (TP-3GW) were collected.

Test Pit 4. On the east side of the building, just south of the concrete structure. Fill and sand. Stopped excavation at 2.5 feet because of the presence of a buried PVC pipe. Soil was moist. One soil sample (TP-4A) was collected. No water was encountered.

Test Pit 5. On the southwest side of the building, in the area near a concrete structure and associated standpipes. Sand, gravels, and boulders. Groundwater encountered at 6.5 feet. A sheen was noted on the water. Two soil samples (TP-5A and TP-5C) and a water sample (TP-5GW) were collected.

Test Pit 6. On the west side of the building. Fill, sand and gravel, with boulders. Groundwater at eight feet. Two soil samples (TP-6A and TP-6C) were

collected. No water sample was collected because the pit was unstable and collapsed.

4.0 GROUNDWATER SAMPLING

In order to obtain groundwater samples for chemical analysis and to obtain groundwater levels for estimating the direction of groundwater flow, five monitoring wells were installed. The wells were installed by Clean Harbors, Inc. using hollow stem auger techniques. Because of the frequency of boulders expected during drilling, no attempt was made to obtain soil samples during the drilling. Rather, each of the five wells was located adjacent to one of the test pits, and lithologic data obtained from test pit logs was assumed applicable to the well description. In all cases, the surficial soils are comprised of sand, gravel, and occasional cobbles and boulders. All wells were installed using 2-inch PVC pipe, with a number 10-slot 5-foot screen.

After the wells were drilled and installed, each standpipe was developed by bailing until the bailed water was clear or relatively free of turbidity. Water from wells MW-1A, MW-2A, and MW-6 contained some fine materials even after development was complete. Liquid from well MW-3A consisted of both an aqueous and non-aqueous phase. Water samples were collected during the following week for the same analyses as completed on test pit samples (EPA Schedules 601, 602, 606, and 608, and zinc).

Well MW-WE-1. Adjacent to test pit 1 on the northwest part of the site, the well has a total depth of 11.4 feet. Water level during drilling was about 7.5 feet below land surface.

Well MW-WE-2. Adjacent to test pit 2 near the outdoor storage building. The well has a total depth of 7.0 feet. Water level during drilling was estimated to be 2.5 feet below land surface.

Well MW-WE-3. Adjacent to test pit 3 on the south side of the building. The well has a total depth of 8.5 feet. Water level during drilling was estimated to be 3.5 feet below land surface.

Well MW-WE-4. Adjacent to test pit 4 on the east of the building. The well has a total depth of 7.5 feet. Water level during drilling was about 3 feet below land surface.

Well MW-WE-6. Adjacent to test pit 6 on the west of the building. The well has a total depth of 11.8 feet. Water level during drilling was about 8 feet below land surface.

No well was installed near Test Pit 5, because of the proximity of MW-WE-3 and the existence of prior data collected from the concrete structure near Test Pit 5.

4.1 WATER LEVEL MEASUREMENTS

Static water levels were measured in each well on June 13, 1990. Water levels were:

WELL	WATER LEVEL (feet below land surface)
MW-WE-1	6.5
MW-WE-2	2.9
MW-WE-3	4.6
MW-WE-4	3.0
MW-WE-6	8.0

Because the wells were not field surveyed, the exact elevations of each well was not available. The site, however, is generally paved and level. If land surface is assumed to be virtually level, groundwater flow is southeasterly across the site, generally from the direction of MW-WE-1 toward MW-WE-2.

5.0 RESULTS AND CONCLUSIONS

Analytical data from soil and water samples are presented in Appendices C, D, and E, and summarized in Tables 5-1, 5-2, 5-3, and 5-4. Appendix C includes soil chemical data from the test pits. Appendix D includes water quality data from the test pits. Appendix E includes water quality data from wells. All the data are summarized as follows:

Table 5-1. Soil Test Pit Data.

Table 5-2. Water Quality in Test Pits.

Table 5-3. Water Quality in Wells.

Table 5-4. Oil Phase Chemistry in Well MW-3A.

Offsite soil samples analyzed for PCB's were below applicable quantitation limits. Specifically, soils on the south side of the property (S1 - S4) were below the quantitation limit of 20 mg/kg. Soils on the west side near the ball field (BF-1-BF-4) and from the street drain on the northwest part of the site were below the quantitation limit of 0.2 mg/kg.

Water samples from the wells were comparable with test pit results. Most measured contaminants were in MW-3 and TP-3. Of the few volatile and semi-volatile compounds which were detected in MW-3, MW-4, and MW-6, all were below applicable State Enforcement Standards except for concentrations of trichloroethene of 6 micrograms per liter (μ g/l)in MW-6 and 7 μ g/l in MW-3 (Standard of 5 μ g/l), and of vinyl chloride of 3 μ g/l in MW-3 (Standard of 2 μ g/l). Phthalates were measured in all samples, ranging between 0.026 milligrams per liter (mg/l) in the field blank and 2.8 mg/l in MW-6. Phthalates in water from MW-3 were 110,000 mg/l. PCB concentrations were below the quantitation limit of 0.001 mg/l in the field blank, but measurable in all other samples ranging between 0.022 mg/l in MW-1 and 0.16 mg/l in MW-6. PCB's in water from MW-3 were

TABLE 5-1
TEST PIT SOILS - CHEMICAL DATA SUMMARY

COMPOUND	TP-1A	TP-18	TP: fC	TP-2A	TP-3A	TP-4A	TP-5A	TP-5C	TP-6A	TP-6C
Total Xylenes	-	-	_	-	3		•		• .	<u>-</u>
Diethylphthalate		-	•	1.1	-	0.75	-			<u> </u>
Di-n-butyl phthalate	0.38	•	-		-	1.0	0.93	-	-	0.66
bis(2-ethylhexyl)phthalate	-	•	•	33	3000	130	4.1		4.1	<u>-</u>
Di-n-octylphthalate		-		-	-	<u> </u>	1.1	•	<u> </u>	-
Aroclor 1242	7.5	2.1	1.1	0.6	77	37	10	0.3	13	35
Zinc	26	19	20	94	2600	940	43	82	56	120

Concentrations in milligrams per kilogram (mg/kg).

All other compounds in EPA Schedules 601, 602, 606, and 608 were below applicable quantitation limits.

⁻ Indicates analysis was below quantitation limit.

TABLE 5-2
TEST PIT WATER SAMPLES - CHEMICAL DATA SUMMARY

COMPOUND	TP-1GW	TP-2GW	TP-3GW	TP-5GW
1,1-Dichloroethane	-	-	22	-
trans-1,2-Dichloroethene	-	<u>-</u>	7	-
1,1,1-Trichloroethane	-	19	8	-
Trichloroethene	-	23	<u>-</u>	-
Chlorobenzene	-	· _	8	-
1,4-Dichlorobenzene	-	-	23/36 ⁽¹⁾	-
Ethylbenzene	-	-	10	-
Toluene	-	_	48	• .
Total Xylenes	-	-	79	-
Diethylphthalate (mg/l)	-	•	23	-
bis(2-ethylhexyl)phthalate (mg/ℓ)	0.13	0.23	5500	0.15
Aroclor 1242 (mg/ℓ)	0.03	0.06	3.0	-
Zinc (mg/l)	0.9	4.9	32	3.0

- Indicates analysis was below quantitation limit.

All concentrations in micrograms per liter ($\mu g/\ell$), except as noted.

All other compounds in EPA Schedules 601, 602, 606, and 608 were below applicable quantitation limits.

(1) 23 μ g/ ℓ was in EPA 601 analysis; 36 μ g/ ℓ was in EPA 602 analysis.

TABLE 5-3
GROUNDWATER CHEMICAL DATA SUMMARY

COMPOUND	MW-1A	MU-2A	MV-3A	MU-38	MU-4A	MW+6A	MU-9A(4)
Vinyl Chloride	•	•	3	3	•	•	•
1,1-Dichloroethane	•	•	24	24	•	11	<u>.</u>
trans-1,2-dichloroethene	-	-	14	15	•	•	
1,1,1-Trichloroethane	•	•	6	7	4	6	-
Trichloroethene	-		-	•	•	6	-
1,3-Dichlorobenzene	-	•	•	2	•	-	-
1,3-Dichlorobenzene		-	4	2/7 ⁽²⁾			-
1,4-Dichlorobenzene	•	-	12/17 ⁽¹⁾	16/24 ⁽³⁾	•	7	-
E thy l benzene	-	•	•	2		•	•
Toluene		<u> </u>	11	13		į	
Total Xylenes		-	3	17	•	- "	-
bis(2-ethylhexyl)phthalate (mg/l)	0.033	0.052	110,000	98,000	0.038	2.8	0.026
Aroclor 1242 (mg/l)	0.022	0.093	390	280	0.023	0.16	-
Zinc (mg/l)	0.2	0.03	3.2	5.9	0.07	0.06	<u> </u>

⁻ Indicates analysis was below quantitation limit.

All concentrations in micrograms per liter ($\mu g/\ell$), except as noted.

All other compounds in EPA Schedules 601, 602, 606, and 608 were below applicable quantitation limits.

MW-3B is a duplicate analysis of MW-3A.

- (1) 12 μ g/ ℓ was in EPA 601 analysis; 17 μ g/ ℓ was in EPA 602 analysis.
- (2) 2 μ g/ ℓ was in EPA 601 analysis; 7 μ g/ ℓ was in EPA 602 analysis.
- (3) 16 μ g/ ℓ was in EPA 601 analysis; 24 μ g/ ℓ was in EPA 602 analysis.
- (4) MW-9A is a field blank.

TABLE 5-4 GROUNDWATER (OIL PHASE) CHEMICAL DATA SUMMARY

COMPOUND	MW-3A	MW-3B	
1,1-Dichloroethane	2200	2100	
trans-1,2-Dichloroethene	1400	1500	
1,1,1-Trichloroethane	2500	2400	
Chlorobenzene	550	570	
1,3-Dichlorobenzene	1500	1500/10000 ⁽²⁾	
1,4-Dichlorobenzene	14000	14000	
Chlorobenzene	550	720	
1,4-Dichlorobenzene	14000	14000/30000 ⁽³⁾	
Ethylbenzene	_(1)	1800	
Toluene	_(1)	8400	
Total Xylenes	_(1)	16000	
Aroclor 1242 (mg/kg)	2500	3100	

⁻ Indicates analysis was below quantitation limit.

All concentration in micrograms per liter $(\mu g/\ell)$, except as noted.

All other compounds in EPA Schedules 601, 602, 606, and 608 were below applicable quantitation limits.

- (1) Quantitation limit of 0.5 μ g/ ℓ .
- (2) 1500 μ g/ ℓ was in EPA 601 analysis; 10000 μ g/ ℓ was in EPA 602 analysis.
- (3) $\mu g/\ell$ was in EPA 601 analysis; 30000 $\mu g/\ell$ was in EPA 602 analysis.

390 mg/l. Zinc concentrations were low in all samples. The duplicate analysis on MW-3 confirmed the measured concentrations of all detected compounds.

Most samples from the test pits were generally free of contamination. The obvious exception was soil from Test Pit 3. The only volatile or semi-volatile compound detected in the soils was total xylenes of 3 μ g/l in TP-3A, just above applicable quantitation levels and well below State Enforcement Standards (see Table 5-1). Test pit water samples from TP-2 and TP-3 had low concentrations of several chlorinated solvents and BTEX compounds (see Table 5-2). Only 23 μ g/l chloroethene in TP-2GW was above its State Enforcement Standards of 5 μ g/l. Phthalates were detected at relatively low concentrations in shallow samples from Test Pits 1, 2, 4, 5, and 6. Much larger concentrations were detected in Test Pit 3. PCB concentrations ranged between 0.3 and 77 mg/l, with samples from Test Pits 3, 4, and 6 greater than 10 mg/l. Zinc concentrations were generally low, with a maximum concentrations in Test Pit 3 of 2600 mg/l. Water samples from the test pits are probably not representative of dissolved concentrations because they were unfiltered samples, with large amounts of sediment.

In sampling the liquid in well MW-3, it was observed that two phases were present. The laboratory separated the phases in analyses for volatiles and semi-volatiles (EPA 601 and 602), and PCB's (EPA 608). The entire sample was analyzed for phthalates (EPA 601) and zinc. Table 5-4 presents results of analysis of the oil phase for EPA 601, 602, and 608 compounds.

In order to discuss the results of the Phase 2 sampling, it is necessary to compare these results with the Phase 2 results presented in an earlier report. The following conclusions are believed reasonable:

Surficial soils (the upper 12 inches) at the site are locally contaminated with variable levels of PCB's and phthalates. The most significant contamination seems to occur near one of the two dry wells near the southwest and eastern walls of the building, the drum

- storage area, or the assumed leachfield on the southeast side of the building.
- Deeper soils (down to eight feet in depth), except in the vicinity of

 Test Pit 3 and, possible, Test Pit 6, generally seem free of

 contamination.
- Significant levels of volatile and semi-volatile compounds seem limited to surficial contamination near the drum storage area and, possibly, near Test Pit 6.
- Groundwater is contaminated near TP-3 with high levels of process chemicals. Groundwater from MW-6 had elevated levels of trichloroethene. Low concentrations of PCB's and phthalates were present in all water samples collected onsite. These low concentrations may not be in the dissolved phase because the water samples contained high sediment loads.

In order to discuss the significance of the chemical results, it is helpful to review applicable State and Federal Standards as they apply to chemicals found on site. The primary concerns are potential health effects from either PCB's or phthalates. Of lesser concern, because of more limited occurrence, are health effects from chlorinated solvents.

The clean-up goals for PCB's in soils have been variable, but generally have been between 1 and 50 mg/l. The lower concentrations have generally been recommended in residential areas. Industrial areas have had cleanup levels recommended between 10 and 50 mg/l, depending on potential environmental or human exposure pathways. Recent reevaluation of the individual cancer risk assessment data for PCB's suggests that various containment or exposure reduction scenarios short of removal may be sufficient (INSIDE EPA Weekly Report, Vol. 11, No. 35, August 31, 1990, p.16). In reference to an early draft of a planned EPA guidance document, it has been suggested that PCB's are a principal threat at 100 mg/kg in residential areas and at 500 mg/kg in industrial areas.

PCB's in water have a Proposed Federal Maximum Contaminant Level (MCL) of 0.0005 mg/l. Although all water samples collected on site were above this level, Wehran does not believe that there is necessarily a major groundwater contamination problem. Because the water samples were not filtered, it is likely that the measured PCB's were particulate rather than dissolved.

Whatever level of cleanup is ultimately recommended for PCB's in site soils, it is likely that shallow and deeper soils near TP-3, and at least shallow soils near TP-4 and TP-5 will need to be remediated. Except for soils near TP-3 (where free product exists in the subsurface), remediation could consist conceivably of containment or exposure reduction measures.

Phthalates are the subject of ongoing toxicologic research. The EPA has concluded (Federal Register, Vol. 53, No. 14, January 22, 1980, p.1895) that butylbenzyl phthalate (BBP) and bis(2-ethylhexyl)phthalate (DEHP) are the phthalates of health concern. EPA, as of July 5, 1990, has proposed a Primary Drinking Water MCL for DEHP of 0.004 mg/l. There are no known recommended soil standards for DEHP.

DEPH, which is classified as a probable human carcinogen (Group B2), is the primary phthalate found in samples on site. As with the PCB data, all water samples collected (even including the field blank) exceeded the proposed MCL for DEHP. Because the water samples were not filtered, it is likely that the measured DEHP concentrations were based on a particulate rather than a dissolved source. Even if the blank concentration were subtracted as a baseline from the other samples, all would still exceed the Proposed MCL.

Whatever level of cleanup is ultimately recommended for phthalates in site soils, the distribution of phthalates is very similar to the distribution of PCB's onsite. Any soil remediation will automatically address both compounds.

Chlorinated solvents were below Vermont Enforcement Standards in all water samples, except for trichloroethene in soils near the Drum Storage Area. Chlorinated solvents are abundant, particularly in the oil phase, in liquid samples from MW-3. The only other water samples that indicate a potential contamination

problem are in samples from TP-3 and, possibly, MW-6. Because these samples were not filtered, the analysis does not reflect the aqueous phase. Whatever the remediation and cleanup levels proposed, solvents are significant near TP-3 and TP-2, and possibly a factor near TP-6.

In summary, the Phase 2 investigation continued the assessment of the extent and depth of contamination onsite at the Jard Facility and on adjacent property. No evidence of contamination was found in adjacent soils. Contamination onsite appears restricted to "hot spots" of concentrated chemicals in association with former process stream disposal areas south and east of the facility. Groundwater is contaminated locally in the vicinity of TP-3, where free product was observed during excavation and drilling.

6.0 RECOMMENDATIONS

The cost of any remediation will be dependent on the volumes of soils needing treatment. This volume, in turn, is dependent on the cleanup level recommended for the site. The cleanup level is dependent on containment or exposure reduction scenarios acceptable as part of site remediation. It is assumed that soil remediation, but not necessarily groundwater treatment, will be necessary for the site, based on the low mobilities of chemicals found in the subsurface, the general lack of confirmed groundwater contamination, and the lack of nearby receptors. As part of the evaluation of the most appropriate remediation plan for the site, are recommended:

- Determine applicable State guidance levels for required cleanup of site soils. This determination will include consideration of any containment or exposure reduction scenarios (paving, for example) considered applicable for future site plans, along with limited exposure pathways for environmental or human health risks.
- Excavate soils in hot spots. The estimated volumes of soils needed to be removed will be confirmed by analysis of soils collected during the excavation process.
- Concurrent with soil excavation, sample water from onsite wells for EPA Schedules 601, 602, 606, and 608. Filter water for analysis for EPA 606 and 608 compounds.

APPENDIX A TEST PIT LOGS

WEHRAN ENGINEERING CONSULTING ENGINEERS

PROJECT No. 00272.01

TEST PIT LOGS

PROJECT: JARD

SHEET 1 **OF** 1

CLIENT:

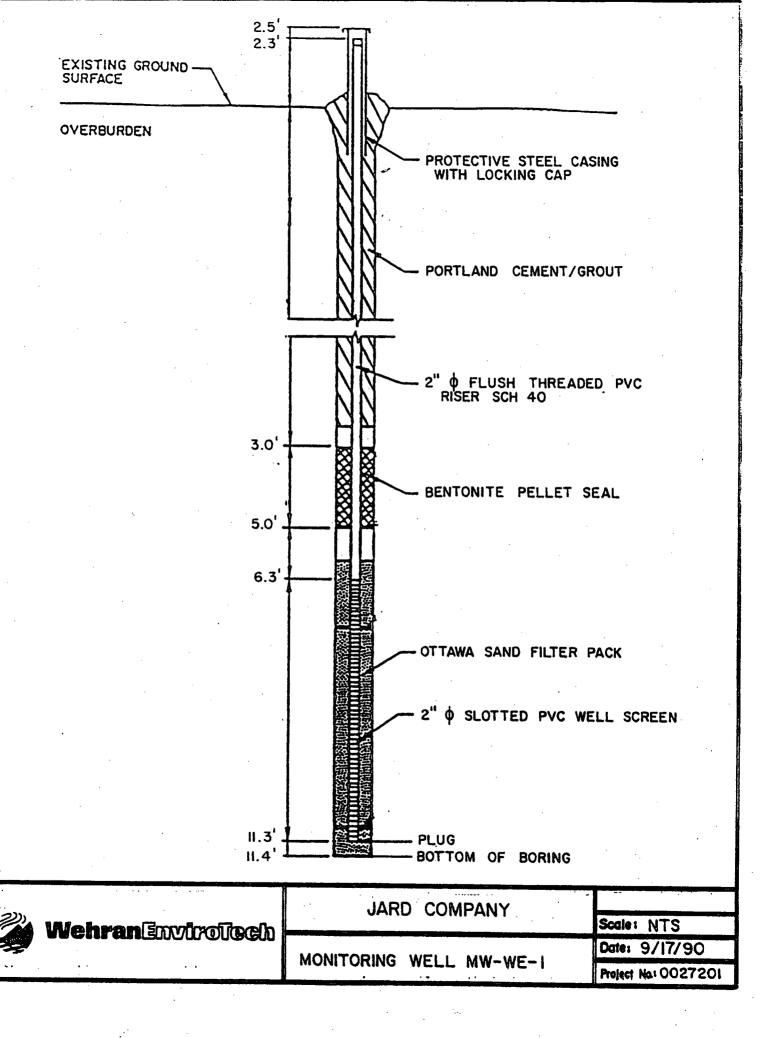
CONTRACTOR: CLEAN HARBORS
DEPTH TO WATER:

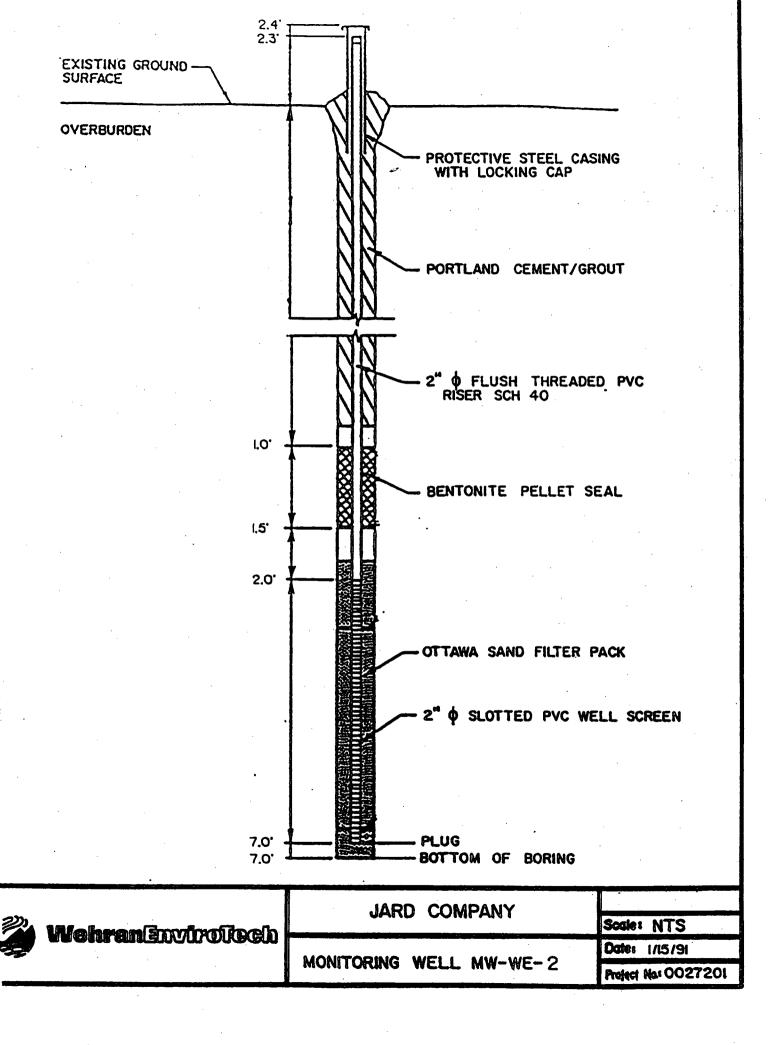
EQUIPMENT: BACKHOE
INSPECTOR: CINDY SPRAGUE/ANDREA ASCH

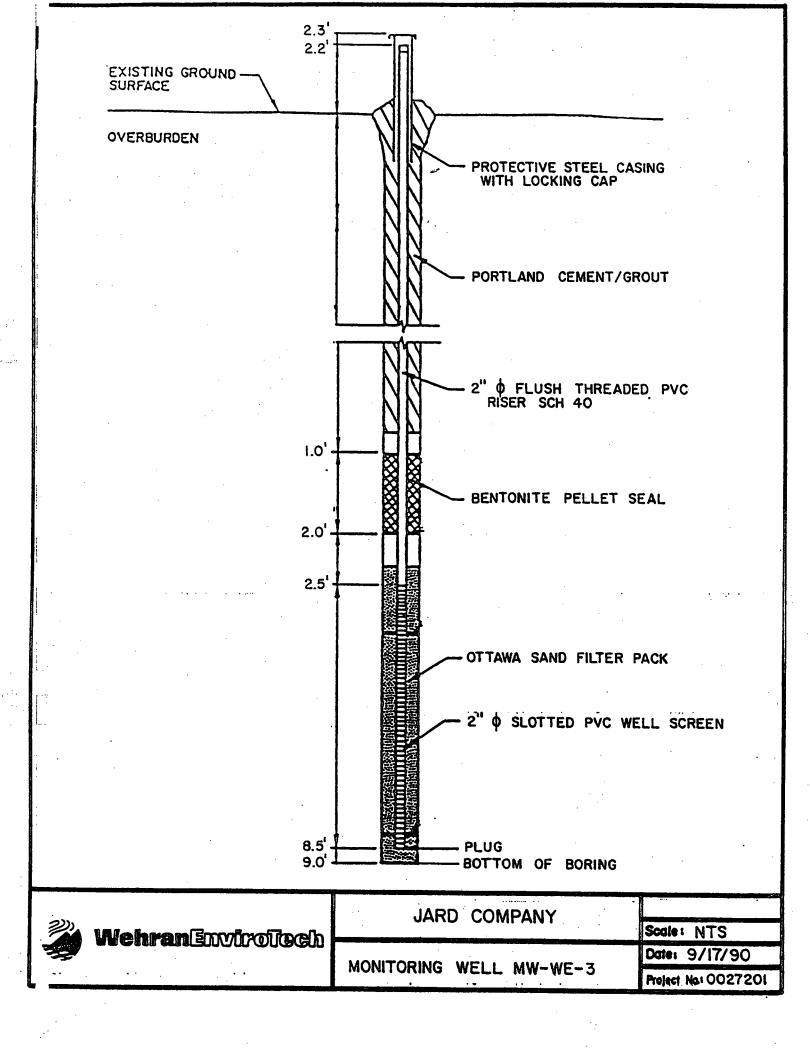
DEPTH TO				SPRAGUE/ANDREA ASCH
WELL			No. TP-1 Date: 5/9/90	Elevation
CONSTRUCTION	DEPTH FT.	SAMPLE No. DEPTH	CLASSIFICATION .	REMARKS
			GRAY GRAVEL AND SAND, DRY, FILL BROWN SAND, SOME GRAVEL, SOME COBBLES, SOME BOULDERS, LITTLE SILT, MOIST. GRAVEL, COBBLES AND BOULDERS ARE ROUNDED.	0-3' GRAB SOIL SAMPLE COLLECTED AND ANALYZED IN ACCORDANCE WITH EPA METHOD 8010, 8020, 606 AND PCB'S.
in Test Pi	— 5 —			3-6' GRAB SOIL SAMPLE COLLECTED AND ANALYZED IN ACCORDANCE WITH EPA METHOD 8010, 8020, 606 AND PCB'S.
-			SOILS SATURATED AT 7.5°	7.5' GRAB SOIL SAMPLE COLLECTED. ANALYSIS SIMILAR TO ABOVE. GROUNDWATER SAMPLE COLLECTED: EPA 601,
mot installed			end of excavation = 8'	602, 606 AND PCB.
. 1	-10 -			
Monitor well				
Mon	-15 -	·		
	-20-	·		-
COMMENTS				
COMMENTS:	Loc	ation: 1	North of building - near NW co	rner

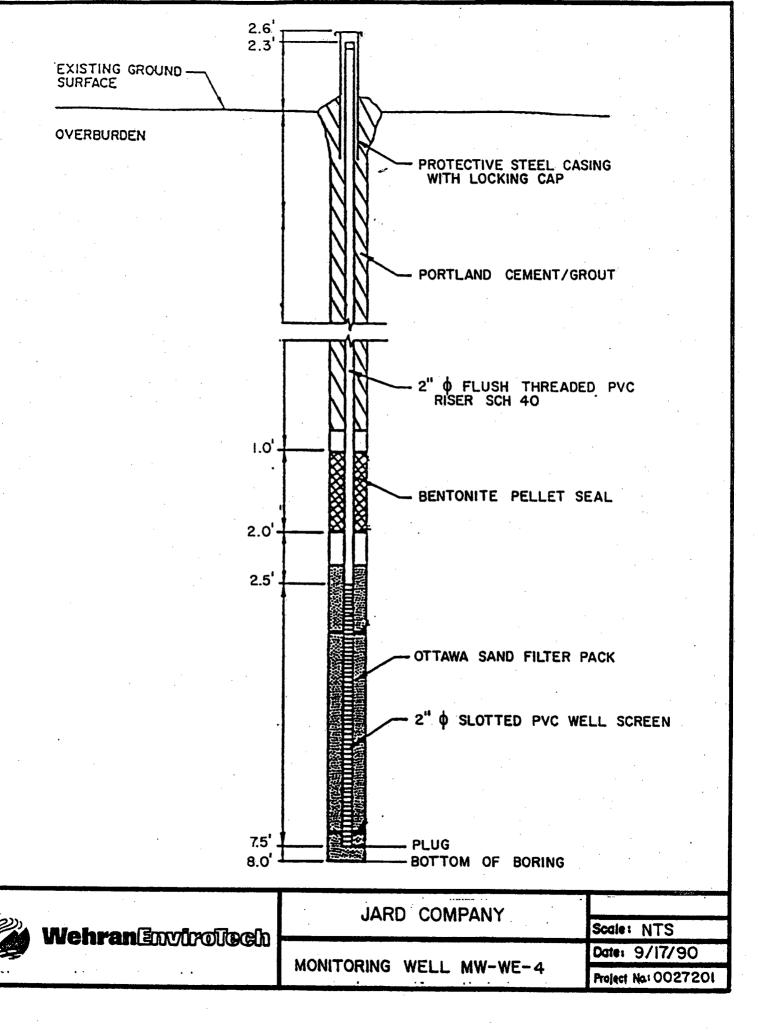
WYZ WEHRAN ENGINEERING TEST PIT LOGS MS consulting engineers PROJECT No. 00272.01 PROJECT: JARD SHEET OF 1 CLIENT: CONTRACTOR: CLEAN HARBORS EQUIPMENT: **BACKHOE** DEPTH TO WATER: INSPECTOR: CINDY SPRAGUE/ANDREA ASCH LOG OF TEST PIT No. Date: 5/9/90 Elevation TP-2WELL SAMPLE No. DEPTH DEPTH FT. CLASSIFICATION. REMARKS 0-2.5' GRAB SOIL SAMPLE BROWN SAND, SOME GRAVEL, SOME BOULDERS, SOME COLLECTED, ANALYZED IN COBBLES, ROUNDED, DAMP, ACCORDANCE WITH EPA 8010, 8020, 606, PCB WATER ENCOUNTERED AT 2.5' 2.5' COLLECT GROUNDWATER SAMPLE ANALYSIS, EPA 601, 602, BOTTOM OF EXCAVATION - 3' Pit 606, PCB Test Monitor well not installed -10 -15 -20-**COMMENTS:** South east of main building - near drum storage Location: area

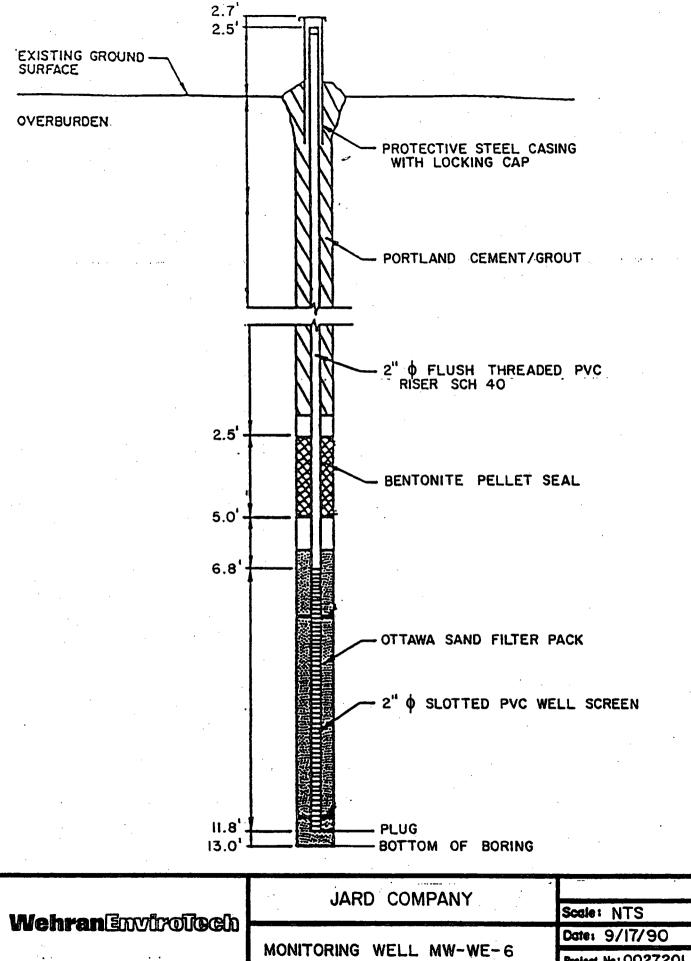
	HRAN 1 BUTING BI	ENGINEERING IGNEERS	PROJECT No. 00272.01	TEST PIT LOGS						
PROJECT:	JARD		00272.01	SHEET 1 OF 1						
CLIENT:										
DEPTH TO	CONTRACTOR: CLEAN HARBORS EQUIPMENT: BACKHOE DEPTH TO WATER: INSPECTOR: CINDY SPRAGUE/ANDREA ASCH									
			No. TP-3 INSPECTOR: CINDY Date: 5/9/90	SPRAGUE/ANDREA ASCH Elevation						
WELL	DEPTH FT.		CLASSIFICATION	1						
CONSTRUCTION	FT.	No. DEPTH	GR, BR COBBLES, SOME SAND, SOME GRAVEL, LITTLE	REMARKS						
			BOULDERS, MOIST (FILL)	ANALYSIS: EPA 8010, 8020, 606,						
			GRAY COBBLES, LITTLE SAND, LITTLE GRAVEL, FILL	PCB						
t t			GROUNDWATER* AT 3.5'							
st Pi				COLLECT GW SAMPLE AT 3.5' ANALYSIS: EPA 601, 602, 606, PCB						
n Test	— 5 –		BOTTOM OF EXCAVATION AT ~ 4.5'							
led in			·	*GROUNDWATER HAS DARK BLACK OILY LOOKING SUBSTANCE FLOATING ON TOP OF IT.						
not installed				THIS IS IN THE AREA OF AN OLD LEACHFIELD.						
ot 1	-10 -		·							
well n	.0									
				·						
onitor										
W .	}									
	-15 -									
	[·						
	}		·							
			·	,						
F	-20-		·	•						
	Į		•	•						
	ŀ									
COMMENTS:	Lo	cation:	south of building, in area of	old leachfield						

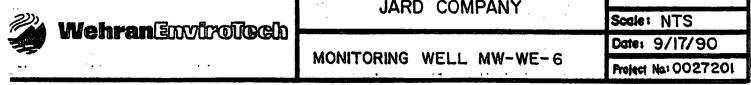

Section of the second


MEHRAN ENGINEERING TEST PIT LOGS. WE consume engineers PROJECT No. 00272.01 PROJECT: JARD SHEET 1 OF 1 CLIENT: CONTRACTOR: CLEAN HARBORS EQUIPMENT: BACKHOE DEPTH TO WATER: INSPECTOR: CINDY SPRAGUE/ANDREA ASCH LOG OF TEST PIT **Date:** 5/9/90 No. Elevation TP-4 WELL DEPTH FT. SAMPLE No. DEPTH CLASSIFICATION . CONSTRUCTION REMARKS GRAB SOIL SAMPLE 0-1' GRAY-BROWN SAND AND GRAVEL, DAMP (FILL) 1-COLLECTED ANALYSIS: EPA 8010, 2.5' GRAY-BROWN SAND (FILL MATERIAL AROUND 8020, 606, PCB PIPE), MOIST ENCOUNTERED PINK PVC PIPE AT APPROXIMATELY 1.5' - POSSIBLY GAS PIPE Test Pit BOTTOM OF EXCAVATION ~ 2.5' DUE TO GAS PIPE 5 Monitor well not installed in 10 15 -20-**COMMENTS:** Location: East side of building, south of concrete tile


I \VAV/	HRAN BUTTING EN	ENGINEERING	>	222 1525	· •		TEST	PIT	LOGS
1				PROJECT	No. 00272.	01			•
PROJECT: CLIENT:	JARD						SHEET	1 (OF 1
CONTRACTO	OR : C	LEAN HARE	ORS	<u> </u>	EQUIPMENT:	ВАСКНО	E		
DEPTH TO	WATER	₹:			INSPECTOR:		SPRAGUE	/ANDRI	EA ASCH
		ST PIT	No.	TP-5	Date: 5	/9/90	Elevatio	n	
WELL CONSTRUCTION	DEPTH FT.	SAMPLE No. DEPTH		CLASS	SIFICATION		REN	MARKS	
				OWN SAND, SOME G BBLES, LITTLE SILT,	RAVEL, SOME BOULI DAMP TO MOIST	DERS, SOME	•		SOIL SAMPLE , 8020, 606
Test Pit	- 5 -								SOIL SAMPLE , 8020, 606,
in '									
j			╟—	GROUNDWA	TER *AT 6.5'		6-6.5' COLI SAME ANA		B SOIL SAMPLE ABOVE
1116			 	BOTTOM OF E	EXCAVATION ~ 7.5'	·		LLECT (EPA 601,	GW SAMPLE 602, 606, PCB
not installed									OF WATER
	-10 -						SHIELEN	ON IOF	OF WAIER
r well									
Monitor	-								-
Mo		•							
	—I5 —			•					·
						`			
	-20-	•							
COMMENTS	T.e	ocation.	e ^	uth of bui	lding, nea	r south	west co	rner	
		<u> </u>	<u></u>	<u> </u>			11 Val Ia VV	****	
									<u>- </u>


PROJECT: JARD CLIENT: CONTRACTOR: CLEAN HARBORS DEPTH TO WATER: LOG OF TEST PIT No. TP-6 Date: 5/9/90 Elevation REMARKS GRAY SAND AND GRAVEL, DRY - FILL FOR PARKING LOT BROWN SAND, SOME GRAVEL, SOME BOULDERS, SOME COBBLES, LITTLE SILT. GROUNDWATER AT 8' BOTTOM OF EXCAVATION = 8' COULD NOT GET SAMPLE GROUNDWATER AT 8' COULD NOT GET SAMPLE COULD NOT COULD NOT GET SAMPLE COULD NOT COULD NOT COULD NOT COULD NOT COULD NOT COU	₩ <u>₩</u>	SILDING SNE	SNEEK NOWETHINGS	PPO IFCT No seems of	TEST PIT LOGS
COMMENTS: Location: West side of building, between powerlines and comments: Asch Depth of water in the property of the propert				PROJECT No. 00272.01	SHEET 1 OF 1
COMMENTS: Location: West side of building, between powerlings and comments: Location: West side of building, between powerlings and comments and collars and colla		JARD			
DEPTH TO WATER: LOG OF TEST PIT No. TP-6 Date: 5/9/90 WELL MASTRUCTION PF. SAMPLE CLASSIFICATION REMARKS GRAY SAND AND GRAVE, DRY - FIL FOR PARKING LOT GRAY SAND AND GRAVE, DRY - FIL FOR PARKING SANDYLED IN ACCORDANCE WITH PARKING SANDYLED IN ACCORDANCE WITH PARKING SANDYLED IN ACCORDANCE WITH PARKING SAND SAME AS ABOVE. GROUNDWATER AT 8' # BOTTOM OF EXCAVATION - 8' COULD NOT GET SAMPLE ANALYSIS SAME AS ABOVE. -10 -10 -10 COMMENTS: Location: West side of building, between powerlines and comments.		R : CI	EAN HARB	ORS EQUIPMENT: BACKHO	E CONTRACT
WELL DOSTRUCTION OF THE SAMPLE CLASSIFICATION REMARKS OBSTRUCTION OF THE SAMPLE CLASSIFICATION REMARKS OF COLLECT GRAB SOIL SAMPLE - SHAME CORDANCE WITH BRA METHOUS 8010, 8020, 606, 602, 606, 6020, 6020, 606, 6020, 606, 6020, 606, 6020, 606, 6020, 606, 6020, 606, 6020, 606, 6020, 606, 6020, 6020, 606, 6020, 6020, 6020, 606, 6020,				INSPECTOR: CINDY	SPRAGUE/ANDREA ASCH
GRAY SAND AND GRAVEL, DRY - FILL FOR PARKING LOT COMMENTS: Comments: Comm	LOG	OF TE	ST PIT	No. TP-6 Date: 5/9/90	Elevation
GRAY SAND AND GRAVEL, DRY - FILL FOR PARKING LOT BROWN SAND, SOME GRAVEL, SOME ROULDERS, SOME COBBLES, LITTLE SILT. GROUNDWATER AT 8 * BOTTOM OF EXCAVATION - 8' COULD NOT GET SAMPLE - ANALYSIS SAME AS ABOVE. COULD NOT GET SAMPLE OF GROUNDWATER AT ANALYSIS SAME AS ABOVE. COULD NOT GET SAMPLE OF GROUNDWATER AT ANALYSIS SAME AS ABOVE. COULD NOT GET SAMPLE OF GROUNDWATER ANALYSIS SAME AS ABOVE. 10 11 10 11 10 11 11 11 11 1	WELL	DEPTH	SAMPLE No DEPTH	CLASSIFICATION	REMARKS
GROUNDWATER AT 8' 4 BOITOM OF EXCAVATION - 8' COULD NOT GET SAMPLE OF GROUNDWATER BECAUSE TEST THY WAS UNSTRABLE AND MATERIAL COLLARSED INTO THE BOTTOM OF THE PIT. COMMENTS: Location: west side of building, between powerlines and	<u>Caronino</u>		103.501.111	BROWN SAND, SOME GRAVEL, SOME BOULDERS, SOME	ANALYZED IN ACCORDANCE WITH EPA METHODS 8010, 8020, 606,
GROUNDWATER AT 8' # BOTTOM OF EXCAVATION - 8' **COULD NOT GET SAMPLE OF GROUNDWATER BECAUSE TEST PIT WAS UNSTABLE AND MATERIAL OF THE BOTTOM OF THE BOTTOM OF THE PIT. **COMMENTS: Location: west side of building, between powerlines and	Test Pi	- 5 -		COBBLES, LITTLE SILT.	3-6' COLLECT GRAB SOIL SAMPLE - ANALYSIS SAME AS ABOVE.
GROUNDATER BECAUSE TEST FIT THE PIT. HE PIT. COMMENTS: Location: west side of building, between powerlines and					4 5 7
COMMENTS: Location: west side of building, between powerlines and	not	-10 -		BOTTOM OF EXCAVATION ~ 8°	* COULD NOT GET SAMPLE OF GROUNDWATER BECAUSE TEST PIT WAS UNSTABLE AND MATERIAL COLLAPSED INTO THE BOTTOM OF THE PIT.
COMMENTS: Location: west side of building, between powerlines and	Monitor	-15			
COMMENTS: Location: west side of building, between powerlines and		-13			
		-20-			
	1				
	l				
building.	COMMENT	S:	Location:	west side of building, betwe	een powerlines and
	L		building.		
	1				


APPENDIX B MONITORING WELL CONSTRUCTION DIAGRAMS



APPENDIX C TEST PIT SOIL CHEMICAL DATA

INDUSTRIAL & ENVIRONMENTAL ANALYSTS, INC. 1901 NORTH HARRISON AVE. CARY, N.C. 27513

CHAIN OF CUSTODY RECORD

Survey of

NO: 44.77

									·	7_				\sim						
PROJECT #			PROJECT N	IAME	· c	10:			$\overline{}$		7	REQU	JESTI	=D P/	RAM	HETER	iS			
20272.01	ZARD	>			0 11 12	AM 接	RIX	17	- 1	$\overline{\mathcal{T}}$		>				}y	$\overline{\mathcal{I}}$	T	\overline{T}	
		$*i!_I$	A top No top a succession	. Production by party from the		233.5	\$'31 1	1/2	; / <u>}</u>	3 / 5	2) \ 4	\$ \ }			/ :	/rug/	/			/ /
Cyntha S	ngpm		.e . •		N. N.	0		800/8020	Pc8/606	3 / 26,	Zinc (has)	209	/2	/,	1	. /		. /		/ '
SAMPLE DATE		GPAB **	STA	TION LOCATION (CO.	OF I N E R S		WATER)/Q	PCE	ρ_{CB}	\ \ \ \	209/109	PCB	909	12	/	/			
TP1A 5.9.90	10:30	X	Test pil	. '	2	X		X	X		X									
7P1B 5 4.90	10,30	X	lest pit	†1 3-6'	2	Χ		X	X	[]	X		· · ·				Ī			
7PIC 5.9.90	D(30)	X	7est pit	1 7,5'	2	X		X	X		X									
TPZA 5.9.90	12:00	X	Test pit	2 0-2.5'	2	X		X	X	<u> </u>	X									
TP 26W 5-9-90	12:00		Test pit	2 grunduak-	6		X					X	X	X	X					
TP1 6W 5.9.40	10:30		Test pit	1 grundwsk-	6		X					X	×	X	X	9				
793A 59.40	12:30	X	Test pit	3 0-2.5'	2	X		×	X		X									
773 au 5.990	12:30		7est pit :	3 grunduak	6		X					X	X	X	×					
TP4 A 5.4.90	11.30	X	Test pit L	4 0-25'	2	X		X	X	'	X									
TP5 A 59.90	2:00	X	Test pil:	5 0-3'	2	X	.[X	X		X									
TP5 C 5.9.40	2;05	$\overline{}$	Test pit:		2	X		X			X									
TP56~5990	11_		<u> </u>	5 grunducte-	6		X	,				×	X	X	X	,				
RELINQUISHED B	Y (SIGNATURE)	D/	ATE TIME	RECEIVED E	BY	100	<u>DA</u>	JE 7	IME.	SW CO	AS VALE	Acur	TEN	No.			ELEA	RUSH	NO.	
Gulty	hypr		1040 3:20	TO CALLERY NAC	uth	<u>ui</u>	15/1		5:20					·						
RELINQUISHED B	Y (\$/GNATURE)	D/	ATE TIME	RECEIVED FOR I	LAB BY		DAT		TIME	PRO	JECT	JANAG	ER (P	EASEP	AUNT)	7				
	٧			•		,	ĺ										399	50		
			IEA R	EMARKS										FIEL	D REMA	ARKS				
100 10 100 100 100 100 100 100 100 100																				

= 12						•										·	zo Ž		F.,		1 - i	441 -	
PROJEC					PROJEC	T NAME	M. Francisco	11.73	e se	**		$\overline{\sim}$	<u> </u>		REOL	JEST		RAM	FTFF	RS.	,		
·>>772.	.01	TA	5 D			•.			M O	VIRIX	17	<u> </u>	, , , , , , , , , , , , , , , , , , ,	7		7		\rightarrow	7	 7		T	$\overline{}$
					(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	die estre	tanas in	776	10000000000000000000000000000000000000	以级		, /		$\frac{1}{2}$	ş /		/_	. /	- [
Cent		,	//		Postarios	V-12-04-14-14		# OF		WAT	2/20		PCB 200	2) A 4/4 / 1	(2) /605								
SAMPLE I.D.	DATE	TIME	#8:	GPA		TATION I	OCATION 🖑			Ā)Š	1	PCB	3	3	Pre	/ 3						
IPGA S	5940	3:30		×	Test	pit 6	0-31	2	. \		X	X		X									
TP6C S	5.9.40	3.30		X	Test	oit 6	6-8'	_ 2	. Χ	(X	X		X									
					·		•		.									,					
BF 1-4 5	5.9.40	4,00	X		•	•	F1-BF4	1	X				X										
South 5 1-4 Street 5	54.40	5,00	X		composi	it of B -Suicth	\$P ·	1	X				X							1			-
Street 5	1990	5:30		X		Drain		1	X				X										
							.1																<u> </u>
																	ļ—		\ \ <u>\</u>				

									1						· · · · · · · · · · · · · · · · · · ·								
																							
						· · · · · · · · · · · · · · · · · · ·												<u> </u>		 			
ELINQUIS	HED BY	(SIGNA	TURE) DA	TE TI	ME V.A.	RECEIVE	ED BY 🚜	17507	·DAT	EI	IME.	2000	P KIE	A QUO	TENO				N IEA	RUSH	۷O. 🙃	2004
anth	A	New		Sil	3;	20/00	racy & t	Jutch	ır;	اسره	ح اح	(:20)		\$	•								
RELINQUISI	HED BY	(SIGNA	TURE	DA	TE TI	ME	RECEIVED FO	OR LAB BY	' · ; ·	DAT	E	IME	PRO.	ECT N	ANAG	ER (PL	EASE PE	INT)					
				<u></u>		DEMARK	(O 16 %) (d.)	*30 0st												399	<u>5U</u>		
A PAREMARKS (***********************************			ाड स्वाहर	esar Tep	••••	<u>.</u>					-	FIELD	REMA	RKS									
								*							•		· . ·						

Date: May 24, 1990

Cindy Sprague Wehran Engineering 1 Mill Street, Chace Mill Burlington, YT 05401-1532

Reference: IEA Report No. 237130 po #

Dear Cindy:

Transmitted herewith are the results of analyses on 17 samples submitted to our laboratory on 5/10/90.

Please see the enclosed reports for your results.

Yery truly yours,

INDUSTRIAL & ENVIRONMENTAL ANALYSTS, INC.

Paul S. Warden Staff Scientist

Industrial & Environmental Analysts, Inc.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

LAB RESULTS

5/25/90

Wehran Engineering 1 Mill Street, Chace Mill Burlington, YT 05401-1532 IEA # 237130 JARD

Date Received: 5/10/90

Total Samples Received: 17
Reviewed & Approved by

Date Collected: 5/9/90

Total Parameters Requested: 69

	ntion: Cindy Sprague	Rev Parameter Studied	viewed & Approved by Results	Comments
	Sample I.D.		Kesuts	
1	TP-1A	CX606	-	See attached sheets
2	TP-1B	CX606	-	See attached sheets
3	TP-1C	CX606	-	See attached sheets
4	TP1-GW	CW606	-	See attached sheets
5	TP-2GW	CW606	-	See attached sheets
6	TP-3GW	CW606	•	See attached sheets
9	TP-5GW	CW606	-	See attached sheets
10	TP-2A	CX606	-	See attached sheets
11	TP-3A	CX606	•	See attached sheets
12	TP-4A	CX606	-	See attached sheets
13	TP-5A	CX606	-	See attached sheets
14	TP-6A	CX606	-	See attached sheets
15	TP-5C	CX606	-	See attached sheets
16	TP-6C	CX606	•	See attached sheets
4	TP1-GW	GC Methods 601/602	-	See attached sheets
5	TP-2GW	GC Methods601/602	-	See attached sheets
6	TP-3GW	GC Methods601/602	- '	See attached sheets
9	TP-5GW	GC Methods601/602	-	See attached sheets
1	TP-1A	PCB in soil	. -	See attached sheets
2	TP-1B	PCB in soil	-	See attached sheets
3	TP-1C	PCB in soil	-	See attached sheets
7	BF1-4	PCB in soil		See attached sheets
8	1-4 South composite	PCB in soil	•	See attached sheets
10	TP-2A	PCB in soil	•	See attached sheets
11	TP-3A	PCB in soil	-	See attached sheets

industrial & Environmental Analysis, inc.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

LAB RESULTS

5/25/90

Wehran Engineering 1 Mill Street, Chace Mill Burlington, YT 05401-1532

JARD IEA # 237130

Date Received: 5/10/90

Total Samples Received: 17

Date Collected: 5/9/90 Total Parameters, Requested: 69

Reviewed & Approved bu

Attention: Cindy Sprague	Reviewed &	Approved by	Mark
a# Sample I.D.	Parameter Studied	Results	Comments
12 TP-4A	PCB in soil	-	See attached sheets
13 TP-5A	PCB in soil	-	See attached sheets
14 TP-6A	PCB in soil	-	See attached sheets
15 TP-5C	PCB in soil	-	See attached sheets
16 TP-6C	PCB in soil	-	See attached sheets
17 Street Drain	PCB in soil	•	See attached sheets
4 TP1-GW	PCB in water	-	See attached sheets
5 TP-2GW	PCB in water	-	See attached sheets
6 TP-3GW	PCB in water	-	See attached sheets
9 TP-5GW	PCB in water	-	See attached sheets
1 TP-1A	SW-846 Method 8010 (special)	-	See attached sheets
2 TP-1B	SW-846 Method 8010 (special)	-	See attached sheets
3 TP-1C	SW-846 Method 8010 (special)	-	See attached sheets
10 TP-2A	SW-846 Method 8010 (special)	•	See attached sheets
11 TP-3A	SW-846 Method 8010 (special)	-	See attached sheets
12 TP-44	SW-846 Method 8010 (special)	-	See attached sheets
13 TP-5A	SW-846 Method 8010 (special)	- .	See attached sheets
14 TP-6A	SW-846 Method 8010 (special)	-	See attached sheets
15 TP-5C	SW-846 Method 8010 (special)	-	See attached sheets
16 TP-6C	SW-846 Method 8010 (special)	- .	See attached sheets
1 TP-1A	SW-846 Method 8020 (special)	- ,	See attached sheets
2 TP-18	SW-846 Method 8020 (special)	• -	See attached sheets
3 TP-1C	SW-846 Method 8020 (special)	-	See attached sheets
10 TP-2A	5W-846 Method 8020 (special)	-	See attached sheets
11 TP-3A	SW-846 Method 8020 (special)	-	See attached sheets
			•
Comments:		· · · · · · · · · · · · · · · · · · ·	

industrial & Environmental Analysts, Inc.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

LAB RESULTS

5/25/90

Date Collected: 5/9/90

Wehran Engineering 1 Mill Street, Chace Mill Burlington, YT 05401-1532 IEA # 237130 **JARD**

Date Received: 5/10/90

Total Parameters Requested: 69 Total Samples Received: 17

	Atte	ntion: Cindy Sprague	Reviewed &	Approved by	Valles (
		Sample I.D.	Parameter Studied	Results	Comments	_
	12	TP-4A	SW-846 Method 8020 (special)	<u>.</u>	See attached sheets.	
-	13	TP-5A	SW-846 Method 8020 (special)	-	See attached sheets.	
	14	TP-6A	SW-846 Method 8020 (special)	-	See attached sheets.	
	15	TP-5C	SW-846 Method 8020 (special)	-	See attached sheets.	
-	16	TP-6C	SW-846 Method 8020 (special)	-	See attached sheets.	
	1	TP-1A	Zinc, total	25.8 mg/Kg	wet weight	
- -	2	TP-1B	Zinc, total	18.9 mg/Kg	wet weight	
	3	TP-1C	Zinc, total	20.4 mg/Kg	wet weight	
	4	TP1-GW	Zinc, total	0.924 mg/L		
*	5	TP-2GW	Zinc, total	4.87 mg/L		
[:	6	TP-3GW	Zinc, total	32.0 mg/L	•	
F	9	TP-5GW	Zinc, total	3.04 mg/L	•	
, ₁	10	TP-2A	Zinc, total	93.7 mg/Kg	wet weight	
	11	TP-3A	Zinc, total	2560 mg/Kg 🖊	wet weight	
	12	TP-4A	Zinc, total	942 mg/Kg	wet weight	
Ľ.	13	TP-5A	Zinc, total	43.3 mg/Kg	wet weight	
1	14	TP-6A	Zinc, total	55.6 mg/Kg	wet weight	
.,	15	TP-5C	Zinc, total	82.3 mg/Kg	wet weight	
.	16	TP-6C	Zinc, total	120 mg/Kg	wet weight	

Comments:			•	
		,		
	1			
	1			

IEA Sample No.: 237130 Sample Identification: TP-1A

Date Analyzed: May 15, 1990

Date Collected:

May 9, 1990

By: Averill

<u>Number</u>	<u>Compound</u>		Soil Quantitation Limit ug/Kg	Results Concentration ug/Kg
1	Chloromethane	•	1.0	BQL
2	Bromomethane	· :	1.0	BQL
. 3	Yinyl Chloride		1.0	BQL
4	Chloroethane		1.0	BQL
5	Methylene chloride	•	1.0	8QL
6	Trichlorofluoromethane		1.0	BQL
7	1,1-Dichloroethene		1.0	BQL
8	1,1-Dichloroethane		1.0	BQL
9	trans-1,2-Dichloroethene	:	1.0	BQL
10	Chloroform	•	1.0	BQL
11	1,2-Dichloroethane		1.0	BQL
12	1,1,1-Trichloroethane	:	1.0	BQL
13	Carbon tetrachloride		1.0	BQL
14	Bromodichloromethane	•	1.0	BQL
15	1,2-Dichloropropane	•	1.0	BQL
16	trans-1,3-Dichloropropene		1.0	BQL
17	Trichloroethene		1.0	BQL
18	cis-1,3-Dichloropropene	•	1.0	BQL
19	1,1,2-Trichloroethane		1.0	BQL
20	Chlorodibromomethane		1.0	BQL
21	2-Chloroethylvinyl ether		1.0	BQL
22	Bromoform		1.0	BQL BOL
23	Tetrachloroethene		1.0	BQL
24	1,1,2,2-Tetrachloroethane		1.0	BQL
25	Chlorobenzene		1.0	BQL POL
26	1,3-Dichlorobenzene		1.0	BQL
27	1,2-Dichlorobenzene		1.0	BQL
28	1,4-Dichlorobenzene	· · · · ·	1.0 1.0	BQL BQL
Comments.	BQL - BELOW QUANTITATION LIM	IT		
				· .

Ca

IEA Sample No.: 237130 Sample Identification: TP-1A Date Collected: May 9, 1990

Date Analyzed: May 15, 1990

Bg: Averill

		<u>Soil</u> <u>Quantitation Limit</u>	Results Concentration
<u>Number</u>	Compound	<u>uq/Kq</u>	<u>uq/Kq</u>
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

Phthalates EPA Method 606 Compounds

IER Sample Number: 237130

Sample Identification: TP-1A Date Collected: May 9, 1990

Date Extracted: May 17, 1990 Rich By:

Date Analyzed: May 21, 1990

Number	Compound	Soil Quantitation Limit µg/Kg	Results Concentration µg/Kg
1	Dimethylphthalate	350	BQL
2	Diethylphthalate	350	BQL
3	Di-n-butyl phthalate	350	380
4	Benzyl butyl phthalate	350	BQL
5	bis(2-Ethylhexyl)phthalate	350	BQL
6	Di-n-octulphthalate	350	BQL

Comments: BQL = Below Quantitation Limit

PCB Summary Sheet

IEA Sample No. 237130 Sample Identification TP-1A May 16, 1990 Date Extracted

Date Analyzed May 17, 1990

Hedrick

	SOIL	Results
	Quantitation	Concentration
Compound	<u>Limit</u>	mg/Kg
Aroclor 1016	2.0	BQL
Aroclor 1221	2.0	BQL
Aroclor 1232	2.0	BQL
Aroclor 1242	2.0	7.5
Aroclor 1248	2.0	BQL
Aroclor 1254	2.0	BQL
Aroclor 1260	2.0	BQL
Total Arocior Concentration	2.0	BQL

Comments

BOL - BELOW QUANTITATION LIMIT

- (a) Target compound concentration adjusted for % moisture.
- (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present.

IEA Sample No.: <u>237130</u> <u>2</u>

Sample Identification: TP-1B Date Analyzed: May 15, 1990

Date Collected: May 9, 1990 By: Averill

		<u>Soil</u>	Results
		Quantitation Limit	Concentration
<u>Number</u>	<u>Compound</u>	nd/Kd	ug/Kg
1 .	Chloromethane	1.0	BQL
2	Bromomethane	1.0	BQL
3	Yinyl Chloride	1.0	BQL
4	Chloroethane	1.0	BQL
5	Methylene chloride	1.0	BQL
6	Trichlorofluoromethane	1.0	BQL
7	1,1-Dichloroethene	1.0	BQL
8	1,1-Dichloroethane	1.0	BQL
9	trans-1,2-Dichloroethene	1.0	BQL
10	Chloroform	1.0	BQL
11	1,2-Dichleroethane	1.0	BQL
12	1,1,1-Trichloroethane	1.0	BQL
13	Carbon tetrachloride	1.0	BQL
14	Bromodichloromethane	1.0	BQL
15	1,2-Dichloropropane	1.0	BQL
16	trans-1,3-Dichloropropene	1.0	BQL
17	Trichloroethene	1.0	BQL
18	cis-1,3-Dichloropropene	1.0	BQL
19	1,1,2-Trichloroethane	1.0	BQL
20	Chlorodibromomethane	1.0	BQL
21	2-Chlorcethylvinyl ether	1.0	8QL
22	Bromoform	1.0	BQL
23	Tetrachloroethene	1.0	BQL
24	1,1,2,2-Tetrachloroethane	1.0	BQL
25	Chlorobenzene	1.0	BQL
26	1,3-Dichlorobenzene	1.0	BQL
27	1,2-Dichlorobenzene	1.0	BQL
28	1,4-Dichlorobenzene	1.0	BQL
		1.0	BQL -

Comments

BQL - BELOW QUANTITATION LIMIT

IEA Sample No.: 237130 2 Sample Identification: $\overline{IP-1B}$

Date Collected:

May 9, 1990

Date Analyzed: May 15, 1990

By: Averill

Number_	<u>Compound</u>	S <u>oil</u> Quantitation Limit µq/Kq	Results Concentration uq/Kq
		1.0	BQL
1	Benzene		· · · · · · · · · · · · · · · · · · ·
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Commente

BQL - BELOW QUANTITATION LIMIT

IEA Sample Number:	237130	2
Samule Identification	n: TP-18	

Date Collected: May 9, 1990

Date Extracted: May 17, 1990

Rich

Date Analyzed: May 21, 1990

Number	Compound	Soil Quantitation Limit µg/Kg	Results Concentration µg/Kg
1	Dimethylphthalate	350	BQL
2	Diethylphtholate	350	BQL
3	Di-n-butyl phthalate	350	BQL
4	Benzyl butyl phthalate	² 350	BQL
5	bis(2-Ethylhexyl)phthalate	350	BQL
6		350	BQL

BQL - Below Quantitation Limit Comments:

PCB Summary Sheet

IEA Sample No. 237130 Sample Identification TP-18 May 17, 1990 **Date Extracted**

Date Analyzed May 18, 1990

By <u>Hedrick</u>

	<u>SOIL</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	mg/Kg
Aroclor 1016	0.2	BQL
Aroclor 1221	0.2	BQL
Aroclor 1232	0.2	BQL
Aroclor 1242	0.2	2.1
Aroclor 1248	0.2	BQL
Aroclor 1254	0.2	BQL
Aroclor 1260	0.2	BQL
Total Aroclor Concentration	0.2	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

(a) Target compound concentration adjusted for $\boldsymbol{\%}$ moisture.

IEA Sample No.: 237130

Sample Identification: TP-18

Date Collected:

By: Averill May 9, 1990

Date Analyzed: May 15, 1990

Number	<u>Compound</u>	<u>Soil</u> Quantitation Limit <u>µq/Kq</u> 1.0	Results Concentration uq/Kq BQL
1.	Chloromethane	1.0	BQL
2	Bromomethane	1.0	BQL
3	Yinyl Chloride	1.0	BQL
4	Chloroethane	1.0	BQL
5	Methylene chloride	1.0	BQL
6	Trichlorofluoromethane	1.0	BQL
7	1,1-Dichloroethene	1.0	BQL
8	1,1-Dichloroethane	1.0	BQL
9	trans-1,2-Dichloroethene	1.0	BQL
10	Chloroform	1.0	BQL
11	1,2-Dichleroethane	1.0	BQL
12	1,1,1-Trichloroethane	1.0	BQL
13	Carbon tetrachloride	1.0	BQL
14	Bromodichloromethane	1.0	BOL
15	1,2-Dichloropropane	1.0	BQL
16	trans-1,3-Dichloropropene	1.0	BQL
17	Trichloroethene	1.0	8QL
18	cis-1,3-Dichloropropene	1.0	BQL
19	1,1,2-Trichloroethane Chlorodibromomethane	1.0	BQL
20		1.0	BQL
21	2-Chloroethylvinyl ether Bromoform	1.0	BQL
22	Tetrachloroethene	1.0	BQL
23	1,1,2,2-Tetrachloroethane	1.0	BQL
24	Chlorobenzene	1.0	BQL
25		1.0	BQL
26	1,3-Dichlorobenzene	1.0	BQL
27	1,2-Dichlorobenzene 1,4-Dichlorobenzene	1.0	BQL
28	1,4-Diction obsidence	1.0	BQL
omments	BQL - BELOW QUANTITATION LIMIT		

Coi

IEA Sample No.: 237130 Sample Identification: TP-1C

Date Collected:

May 9, 1990

Date Analyzed: May 15, 1990

By: Averill

		Soil Quantitation Limit	Results Concentration
Number	Compound	<u>, па/Ка</u>	nd/Kd
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
.5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

IEA Sample Number: 237130 3

Sample Identification: TP-1C Date Collected: May 9, 1990

Date Extracted: May 17, 1990 By: Rich

Date Analyzed: May 21, 1990

Number	Compound	Soil Quantitation Limit µg/Kg	Results Concentration µg/Kg
1	Dimethylphthalate	350	BQL
2	Diethylphthalate	350	BQL
3	Di-n-butyl phthalate	350	BOL
4	Benzyl butyl phthalate	350	BQL
5	bis(2-Ethylhexyl)phthalate	350	BQL
6	Di-n-octylphthalate	350	BQL

Comments: BQL = Below Quantitation Limit

PCB-Summary Sheet

IEA Sample No. 237130 <u>3</u> Sample Identification TP-1C

May 17, 1990 Date Extracted

Date Analyzed May 18, 1990

<u>Hedrick</u>

•	<u>SOIL</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	mg/Kg
Arocior 1016	0.2	BQL
Aroclor 1221	0.2	BQL
Aroclor 1232	0.2	BQL
Aroclor 1242	0.2	1.1
Aroclor 1248	0.2	BQL
Aroclor 1254	0.2	BQL :
Aroctor 1260	0.2	BQL
Total Aroclor Concentration	0.2	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

(a) Target compound concentration adjusted for $\boldsymbol{\%}$ moisture.

IEA Sample No.: 237130

Date Analyzed: May 15, 1990 Sample Identification: TP-2A

By: Averill May 9, 1990 Date Collected:

		•	
M L		<u>Soil</u> Quantitation Limit	Results Concentration
Number	<u>Compound</u>	<u>uq/Kq</u>	<u>uq/Kq</u>
1	Chloromethane	1.0	BQL
2	Bromomethane	1.0	BQL
3	Yinyl Chloride	1.0	BQL
4	Chloroethane	1.0	BQL
5	Methylene chloride	1.0	BQL
6	Trichlorofluoromethane	1.0	BQL
7	1,1-Dichloroethene	1.0	BQL
8	1,1-Dichloroethane	1.0	BQL
9	trans-1,2-Dichloroethene	1.0	BQL
10	Chloroform	· 1.0	BQL
11	1,2-Dichloroethane	1.0	BQL
12	1,1,1-Trichloroethane	1.0	BQL
13	Carbon tetrachloride	1.0	8QL
14	Bromodichloromethane	1.0	BQL
15	1,2-Dichleropropane	1.0	BQL
. 16	trans-1,3-Dichloropropene	1.0	BQL
17	Trichloroethene	1.0	BQL
18	cis-1,3-Dichloropropene	1.0	BQL
19	1,1,2-Trichloroethane	1.0	BQL
20	Chlorodi bromomethane	1.0	BQL
21	2-Chloroethylyinyl ether	1.0	BQL
22	Bromoform	1.0	BQL
23	Tetrachloroethene	1.0	BQL
24	1,1,2,2-Tetrachloroethane	1.0	BQL
25	Chlorobenzene	1.0	BQL
26	1,3-Dichlorobenzene	1.0	BQL
27	1,2-Dichlorobenzene	1.0	BQL
28	1,4-Dichlorobenzene	1.0	BQL
	·	1.0	BQL
comments [BQL - BELOW QUANTITATION LIMIT		\neg
reminence			
	• .		1
ł	•	•	

Co

IEA Sample No.: 237130 Sample Identification: TP-2A

Date Collected:

May 9, 1990

Date Analyzed: May 15, 1990

By: Averill

Number	Compound	Soil Quantitation Limit ug/Kq	Results Concentration uq/Kq
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

Phthalates EPA Method 606 Compounds

IEA Sample Number: 237130 Sample Identification: TP-2A	10	
Date Collected: May 9, 1990		
Date Extracted: May 17, 1990	8y:	Rich
Nato Analuzod: Mau 22 100M	_	

Number	Compound	Son Quantitation Limit µg/Kg	Results Concentration µg/Kg
1	Dimethylphthalate	350	BQL
2	Diethylphthalate	350	1100
3	Di-n-butyl phthalate	· 350	BQL
4	Benzyl butyl phthalate	[:] 350	BQL
5	bis(2-Ethylhexyl)phthalate	350	33000
6	Di-n-octylphthalate	: 350	BQL

Comments: BQL - Below Quantitation Limit

PCB_Summary Sheet

IEA Sample No. 237130

<u>10</u>

Sample Identification TP-2A

Date Extracted May 17, 1990

Date Analyzed May 18, 1990

<u>Hedrick</u>

	SOIL	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	mg/Kg
Aroclor 1016	0.2	BQL
Aroclor 1221	0.2	BQL
Aroclor 1232	0.2	BQL
Aroclor 1242	0.2	0.60
Aroclor 1248	0.2	BQL
Aroclor 1254	0.2	BQL
Aroclor 1260	0.2	BQL
Total Aroclor Concentration	0.2	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

(a) Target compound concentration adjusted for $\boldsymbol{\pi}$ moisture.

Date Analyzed: May 16, 1990

IEA Sample No.: 237130

Sample Identification: TP-3A

Bg: Averill May 9, 1990 Date Collected:

<u>Number</u>	<u>Compound</u>	Soil Quantitation Limit µq/Kq	Results Concentration ug/Kg
. 1	Chloromethane	1.0	BQL
2	Bromomethane	1.0	BQL
3	Yinyl Chloride	1.0	BQL
. 4	Chloroethane	1.0	BQL
. 5	Methylene chloride	1.0	BQL
6	Trichlorofluoromethane	1.0	BQL
7	1,1-Dichloroethene	1.0	BQL
8	1,1-Dichloroethane	1.0	8QL
9	trans-1,2-Dichloroethene	1.0	BQL
10	Chloroform	1.0	BQL.
11	1,2-Dichloroethane	1.0	BQL
12	1,1,1-Trichloroethane	1.0	BQL.
13	Carbon tetrachloride	1.0	BQL
14	Bromodichloromethane	1.0	BQL
15	1,2-Dichloropropane	1.0	BQL
16	trans-1,3-Dichloropropene	1.0	BQL
17	Trichloroethene	1.0	BQL
18	cis-1,3-Dichloropropene	1.0	BQL
19	1,1,2-Trichloroethane	1.0	8QL
20	Chlorodibromomethene	1.0	BQL
21	2-Chloroethylvinyl ether	1.0	BQL
22	Bromoform	1.0	BQL
23	Tetrachloroethene	1.0	BQL
24	1,1,2,2-Tetrachloroethane	1.0	BQL
25	Chlorobenzene	1.0	BQL
26	1,3-Dichlorobenzene	1.0	BQL
27	1,2-Dichlorobenzene	1.0	BQL
28	1,4-Dichlorobenzene	1.0 1.0	BQL BQL
ments	BQL - BELOW QUANTITATION LIMIT		

Co

IEA Sample No.: 237130 Sample Identification: <u>TP-3A</u>

Date Collected:

May 9, 1990

Date Analyzed: May 15, 1990

By: Averill

Number	<u>Compound</u>	Soil Quantitation Limit uq/Kq	Results Concentration ug/Kg
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
. 7	Toluene	1.0	BQL
8	Total Xulenes	1.0	3

Comments

BQL - BELOW QUANTITATION LIMIT

Phthalates EPR Method 606 Compounds

IER Sample Number: 237130

Sample Identification: TP-3A

Date Collected: May 9, 1990

Date Extracted: May 17, 1990

Date Analyzed: May 23, 1990

11

Rich By:

Cail

Number	Compound	5011 Quantitation Limit µg/Kg	Results Concentration µg/Kg
1	Dimethylphtholate	18000	BQL
2	Diethylphthalate	18000	BQL
3	Di-n-butul phthalate	18000	BQL
4	Benzyl butyl phthalate	18000	BQL
5	bis(2-Ethylhexyl)phthalate	18000	3000000
6	Ni-n-actuanthalate	18000	BQL

Comments:

BQL - Below Quantitation Limit

- (a) Quantitation limit elevated due to sample dilution prior to analysis.
- (b) Sample diluted due to high concentration of target compounds present.

PCB_Summary Sheet

IEA Sample No. 237130 11

Sample Identification TP-3A

Date Extracted May 17, 1990 Date Analyzed May 18, 1990

Hedrick

	SOIL	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	mg/Kg
Aroclor 1016	20	BQL
Aroclor 1221	20	BQL
Aroclor 1232	20	BQL
Aroclor 1242	20	77
Aroclor 1248	20	BQL
Aroclor 1254	20	BQL
Aroclor 1260	20	BQL
Total Aroclor Concentration	20	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

- (a) Target compound concentration adjusted for % moisture.
- (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present.

IEA Sample No.: 237130

Sample Identification: TP-4A

Date Analyzed: May 16, 1990

Date Collected:

May 9, 1990

By: Averill

		<u>Soil</u>	Results
Number	Compound	Quantitation Limit	Concentration
<u> </u>	Compound	nd/Kd	<u>uq/Kq</u>
1	Chloromethane	1.0	BQL
2	Bromomethane	1.0	BQL
3	Yinyi Chloride	1.0	BQL
4	Chlorcethane	1.0	BQL
5	Methylene chloride	1.0	8QL
6	Trichlorofluoromethane	1.0	8QL
. 7	1,1-Dichloroethene	1.0	BQL
8	1,1-Dichloroethane	1.0	BQL
9	trans-1,2-Dichloroethene	1.0	BQL
10	Chloroform	1.0	BQL
11	1,2-Dichloroethane	1.0	BQL.
12	1,1,1-Trichloroethane	1.0	BQL
13	Carbon tetrachloride	1.0	BQL
14	Bromodichloromethene	1.0	BQL
15	1,2-Dichloropropane	1.0	BQL
16	trans-1,3-Dichloropropene	1.0	BQL
17.	Trichloroethene	1.0	8QL
18	cis-1,3-Dichloropropene	1.0	BQL
19	1,1,2-Trichloroethane	1.0	BQL
20	Chlorodi bromomethane	1.0	BQL
21	2-Chloroethylvinyl ether	1.0	BQL
22	Bromoform	1.0	BQL
23	Tetrachloroethene	1.0	BQL
24	1,1,2,2-Tetrachioroethane	1.0	BQL
25	Chlorobenzene	1.0	BQL
26	1.3-Dichlorobenzene	1.0	BQL
27	1,2-Dichlorobenzene	1.0	BQL
28	1,4-Dichlorobenzene	1.0	BQL
	. •	1.0	BQL
comments	BQL - BELOW QUANTITATION LIMIT		
		•	

C

IEA Sample No.: 237130

Sample Identification: TP-4A

May 9, 1990 Date Collected:

Date Amalyzed: May 16, 1990

By: Averill

<u>Number</u>	<u>Compound</u>	Soil Quantitation Limit ug/Kg	Results Concentration uq/Kq
. 1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

Phthalates EPA Method 606 Compounds

IEA Sample Number: 237130 12

Sample Identification: TP-4A

Date Collected: May 9, 1990

Date Extracted: May 17, 1990 Rich By: Date Analyzed: May 22, 1990

Soil Results Quantitation Concentration Commound

(Aannei	Cossipousia	Limit µg/Kg	µg/Kg
1	Dimethylphthalate	350	BQL
2	Diethylphthalate	350	750
3	Di-n-butyl phthalate	350	1000
4	Benzyl butyl phthalate	350	BQL
5	bis(2-Ethylhexyl)phthalate	350	130000
6	Di-n-octulphthalate	350	BQL

BQL - Below Quantitation Limit Comments:

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

PCB Summary Sheet

JUN 4 1990

IEA Sample No. <u>237130</u> <u>12</u>

Sample Identification TP-4A

Date Extracted May 17, 1990

Date Analyzed May 18, 1990

By <u>Hedrick</u>

;	<u>Soil</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	mg/Kg
Aroclor 1016	20	BQL
Aroclor 1221	20	BQL
Aroclor 1232	20	BQL
Aroclor 1242	20	37
Aroclor 1248	20	BQL
Aroclor 1254	20	BQL
Aroclor 1260	20	BQL
Total Aroclor Concentration	20	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

- (a) Quantitation limit elevated due to sample dilution prior to analysis. (b) Sample diluted due to high concentration of target compounds present.
- (c) Target compound concentration adjusted for % moisture.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons SW-846 Method 8010 Compounds

IEA Sample No.: <u>237130</u> <u>13</u>

Sample Identification: TP-5A Date Analyzed: May 16, 1990

Date Collected: May 9, 1990 By: Averill

Number Compound Quantitation Limit Concentrat 1 Chloromethane 1.0 BQL 2 Bromomethane 1.0 BQL 3 Yinyl Chloride 1.0 BQL 4 Chloroethane 1.0 BQL 5 Methylene chloride 1.0 BQL 6 Trichlorofluoromethane 1.0 BQL 7 1,1-Dichloroethane 1.0 BQL 8 1,1-Dichloroethane 1.0 BQL 9 trans-1,2-Dichloroethane 1.0 BQL 10 Chloroform 1.0 BQL 11 1,2-Dichloroethane 1.0 BQL 12 1,1,1-Trichloroethane 1.0 BQL 13 Carbon tetrachloride 1.0 BQL 14 Bromodichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropane 1.0 BQL 17 Trichloroet				Soil_	Results
Number Compound Number Number					Concentration
2 Bromomethane 1.0 BQL 3 Yinyl Chloride 1.0 BQL 4 Chloroethane 1.0 BQL 5 Methylene chloride 1.0 BQL 6 Trichloroffuoromethane 1.0 BQL 7 1,1-Dichloroethane 1.0 BQL 8 1,1-Dichloroethane 1.0 BQL 9 trans-1,2-Dichloroethane 1.0 BQL 10 Chloroform 1.0 BQL 11 1,2-Dichloroethane 1.0 BQL 12 1,1,1-Trichloroethane 1.0 BQL 13 Carbon tetrachloride 1.0 BQL 14 Bromodichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropane 1.0 BQL 19 1,1,2-Trichloroethane <th><u>Number</u></th> <th>Compound</th> <th></th> <th></th> <th><u>μα/Κα</u></th>	<u>Number</u>	Compound			<u>μα/Κα</u>
2 Bromomethane 1.0 BQL 3 Yinyl Chloride 1.0 BQL 4 Chloroethane 1.0 BQL 5 Methylene chloride 1.0 BQL 6 Trichloroflworomethane 1.0 BQL 7 1,1-Dichloroethane 1.0 BQL 8 1,1-Dichloroethane 1.0 BQL 9 trans-1,2-Dichloroethane 1.0 BQL 10 Chloroform 1.0 BQL 11 1,2-Dichloroethane 1.0 BQL 12 1,1,1-Trichloroethane 1.0 BQL 13 Carbon tetrachloride 1.0 BQL 14 Bromodichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropene 1.0 BQL 17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroetha	1	Chloromethane		1.0	BQL
3 Yinyl Chloride 1.0 BQL 4 Chloroethane 1.0 BQL 5 Methylene chloride 1.0 BQL 6 Trichloroffworomethane 1.0 BQL 7 1,1-Dichloroethane 1.0 BQL 8 1,1-Dichloroethane 1.0 BQL 9 trans-1,2-Dichloroethane 1.0 BQL 10 Chloroform 1.0 BQL 11 1,2-Dichloroethane 1.0 BQL 12 1,1,1-Trichloroethane 1.0 BQL 13 Carbon tetrachloride 1.0 BQL 14 Bromofichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropene 1.0 BQL 17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chloroeth		Bromomethane	•	1.0	BQL
4 Chloroethane 1.0 BQL 5 Methylene chloride 1.0 BQL 6 Trichlorofluoromethane 1.0 BQL 7 1,1-Dichloroethane 1.0 BQL 8 1,1-Dichloroethane 1.0 BQL 9 trans-1,2-Dichloroethane 1.0 BQL 10 Chloroform 1.0 BQL 11 1,2-Dichloroethane 1.0 BQL 12 1,1,1-Trichloroethane 1.0 BQL 13 Carbon tetrachloride 1.0 BQL 14 Bromodichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropane 1.0 BQL 17 Trichloroethane 1.0 BQL 18 cis-1,3-Dichloropropane 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-		Yinyl Chloride	•	1.0	BQL
5 Methylene chloride 1.0 BQL 6 Trichlorofluoromethane 1.0 BQL 7 1,1-Dichloroethene 1.0 BQL 8 1,1-Dichloroethane 1.0 BQL 9 trans-1,2-Dichloroethene 1.0 BQL 10 Chloroform 1.0 BQL 11 1,2-Dichloroethane 1.0 BQL 12 1,1,1-Trichloroethane 1.0 BQL 13 Carbon tetrachloride 1.0 BQL 14 Bromodichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropene 1.0 BQL 17 Trichloroethane 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 23				1.0	BQL
6 Trichlorofluoromethane 1.0 BQL 7 1,1-Dichloroethene 1.0 BQL 8 1,1-Dichloroethane 1.0 BQL 9 trans-1,2-Dichloroethene 1.0 BQL 10 Chloroform 1.0 BQL 11 1,2-Dichloroethane 1.0 BQL 12 1,1,1-Trichloroethane 1.0 BQL 13 Carbon tetrachloride 1.0 BQL 14 Bromotichloromethane 1.0 BQL 14 Bromotichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropene 1.0 BQL 17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 <td></td> <td>Methylene chloride</td> <td></td> <td>1.0</td> <td>BQL</td>		Methylene chloride		1.0	BQL
8 1,1-Dichloroethane 1.0 6QL 9 trans-1,2-Dichloroethene 1.0 8QL 10 Chloroform 1.0 8QL 11 1,2-Dichloroethane 1.0 8QL 12 1,1,1-Trichloroethane 1.0 8QL 13 Carbon tetrachloride 1.0 8QL 14 Bromodichloromethane 1.0 8QL 15 1,2-Dichloropropane 1.0 8QL 16 trans-1,3-Dichloropropene 1.0 8QL 17 Trichloroethene 1.0 8QL 18 cis-1,3-Dichloropropene 1.0 8QL 19 1,1,2-Trichloroethane 1.0 8QL 20 Chlorodibromomethane 1.0 8QL 21 2-Chloroethylvinyl ether 1.0 8QL 22 Bromoform 1.0 8QL 23 Tetrachloroethane 1.0 8QL 24 1,1,2,2-Tetrachloroethane 1.0 8QL 25 Chlorobenzene 1.0 8QL 26 1,3-Dichlorobenzene				1.0	BQL
9 trans-1,2-Dichloroethene 1.0 BQL 10 Chloroform 1.0 BQL 11 1,2-Dichloroethane 1.0 BQL 12 1,1,1-Trichloroethane 1.0 BQL 13 Carbon tetrachloride 1.0 BQL 14 Bromodichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropene 1.0 BQL 17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenze		1,1-Dichloroethene		1.0	BQL
10 Chloroform 1.0 6QL	8	1,1-Dichloroethane		1.0	
11 1,2-Dichloroethane 1.0 BQL 12 1,1,1-Trichloroethane 1.0 BQL 13 Carbon tetrachloride 1.0 BQL 14 Bromodichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropene 1.0 BQL 17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	9	trans-1,2-Dichloroethene			
12 1,1,1-Trichloroethane 1.0 BQL 13 Carbon tetrachloride 1.0 BQL 14 Bromodichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropene 1.0 BQL 17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	10	Chloroform			-
13 Carbon tetrachloride 1.0 BQL 14 Bromodichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropene 1.0 BQL 17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	11	1,2-Dichloroethane			
14 Bromodichloromethane 1.0 BQL 15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropene 1.0 BQL 17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	12	1,1,1-Trichloroethane	:		
15 1,2-Dichloropropane 1.0 BQL 16 trans-1,3-Dichloropropene 1.0 BQL 17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	13	Carbon tetrachloride			-
16 trans-1,3-Dichloropropene 1.0 BQL 17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	14	Bromodichloromethane			-
17 Trichloroethene 1.0 BQL 18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	15	1,2-Dichloropropane	:.	1.0	
18 cis-1,3-Dichloropropene 1.0 BQL 19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	16	trans-1,3-Dichloropropene			•
19 1,1,2-Trichloroethane 1.0 BQL 20 Chlorodibromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	17	Trichloroethene			•
20 Chlorodi bromomethane 1.0 BQL 21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	18		•	· · ·	• • • •
21 2-Chloroethylvinyl ether 1.0 BQL 22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL					•
22 Bromoform 1.0 BQL 23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	20	Chlorodibromomethane			•
23 Tetrachloroethene 1.0 BQL 24 1,1,2,2-Tetrachloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	- 21	2-Chloroethylyinyl ether			
24 1,1,2,2-Tetrschloroethane 1.0 BQL 25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	22				-
25 Chlorobenzene 1.0 BQL 26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL	23				•
26 1,3-Dichlorobenzene 1.0 BQL 27 1,2-Dichlorobenzene 1.0 BQL		1,1,2,2-Tetrachloroethane			-
27 1,2-Dichlorobenzene 1.0 BQL	25	Chlorobenzene			-
	26	1,3-Dichlorobenzene			•
00 t 4 Nicklands - 10 PM					
• • • • • • • • • • • • • • • • • • • •	28	1,4-Dichlorobenzene		1.0	8QL
1.0 BQL			•	1.0	BQL
Comments BQL - BELOW QUANTITATION LIMIT	Comments	BQL - BELOW QUANTITATION LIMIT			
	·				ŀ
	1				
	_				· · -

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Aromatics SW-846 Method 8020 Compounds

IEA Semple No.: 237130 13
Sample Identification: TP-5A

Date Collected:

May 9, 1990

Date Analyzed: May 15, 1990

By: Averill

<u>Number</u>	Compound	Soil Quantitation Limit uq/Kq	Results Concentration uq/Kq
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

Phthalates EPA Method 606 Compounds

IEA Sample Number: 237130 13

Sample Identification: TP-5A

Date Collected: May 9, 1990

Date Extracted: May 17, 1990

Date Analyzed: May 22, 1990

Rich

By:

Number	Compound	Soil Quantitation Limit µg/Kg	Results Concentration µg/Kg
1	Dimethylphthalate	350	BQL
2	Diethylphthalate	350	BQL
3	Di-n-butyl phtholate	350	930
4	Benzyl butyl phthalate	350	BQL
5	bis(2-Ethylhexyl)phthalate	350	4100
ſъ	Ni-n-octulnhthalate	350	1100

Comments: BQL - Below Quantitation Limit

PCB Summary Sheet

IEA Sample No. <u>237130</u> <u>13</u>

Sample Identification TP-5A

Date Extracted May 17, 1990 Date Analyzed May 18, 1990

By <u>Hedrick</u>

	<u>soil</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	mg/Kg
Aroclor 1016	2.0	BQL
Aroclor 1221	2.0	BQL
Aroclor 1232	2.0	BQL
Aroclor 1242	2.0	10
Aroclor 1248	2.0	BQL
Aroclor 1254	2.0	BQL
Aroclor 1260	2.0	BQL
Total Aroclor Concentration	2.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

- (a) Target compound concentration adjusted for % moisture.
- (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons SW-846 Method 8010 Compounds

IEA Sample No.: 237130 <u>15</u>

Sample Identification: TP-5C

Date Analyzed: May 15, 1990

Date Collected:

May 9, 1990

By: Averill

<u>Number</u>	<u>Compound</u>	<u>Soil</u> Quantitation Limit µg/Kg	Results Concentration uq/Kq
	Chlamanathana	1.0	BQL
1	Chloromethane	1.0	BQL
2	Bromomethane	1.0	BQL
3	Yinyl Chloride Chloroethane	1.0	BQL
4		1.0	BQL
5	Methylene chloride	1.0	BQL
6	Trichlorofluoromethane	1.0	BQL
7	1,1-Dichloroethene	1.0	8QL
8	1,1-Dichloroethane	1.0	BQL
9	trans-1,2-Dichloroethene Chloroform	1.0	BQL
10		1.0	BQL
11	1,2-Dichloroethane	1.0	BQL
12	1,1,1-Trichloroethane Carbon tetrachloride	1.0	BQL
13	Bromodichloromethene	1.0	BQL
14		1.0	BQL
15	1,2-Dichloropropane	1.0	BQL
16	trans-1,3-Dichloropropene	1.0	BQL
17	Trichloroethene	1.0	BQL
18	cis-1,3-Dichloropropene	1.0	BQL
19	1,1,2-Trichloroethane Chlorodibromomethane	1.0	BQL
20		1.0	BQL
21	2-Chloroethylvinyl ether Bromoform	1.0	BQL
22		1.0	BQL
23	Tetrachloroethene	1.0	BQL
24	1,1,2,2-Tetrachloroethane	1.0	BQL
25	Chlorobenzene	1.0	BOL
26	1,3-Dichlorobenzene	1.0	BQL
27	1,2-Dichlorobenzene	1.0	BQL
28	1,4-Dichlorobenzene	1.0	BQL
mments	BQL - BELOW QUANTITATION LIMIT		

Cor

Purgeable Aromatics SW-846 Method 8020 Compounds

IEA Sample No.: 237130 15 Sample Identification: TP-5C

Date Collected:

May 9, 1990

Date Analyzed: May 15, 1990

Bg: Averill

<u>Number</u>	<u>Compound</u>	Soil Quantitation Limit uq/Kq	Results Concentration uq/Kq
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

Phthalates EPA Method 606 Compounds

IER Sample Number: 237130 15
Sample Identification: TP-5C
Date Collected: May 9, 1990
Date Extracted: May 17, 1990 By: Rick

Date Analyzed: May 23, 1990

Number	Compound	Soil Quantitation Limit µg/Kg	Results Concentration µg/Kg
1	Dimethylphthalate	350	BQL
2	Diethylphthalate	350	BQL
3 ·	Di-n-butyl phthalate	350	BQL
4	Benzyl butyl phthalate	350	BQL
5	bis(2-Ethylhexyl)phthalate	350	BQL
6	Di-n-octylphthalate	350	BQL

Comments:

BQL - Below Quantitation Limit

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

PCB Summary Sheet

IEA Sample No. $\underline{237130}$ $\underline{15}$ Sample Identification $\underline{TP-5C}$

Date Extracted May 17, 1990

Date Analyzed May 18, 1990

By <u>Hedrick</u>

	<u>SOIL</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	mg/Kg
Aroclor 1016	0.2	BQL
Aroclor 1221	0.2	BQL
Aroclor 1232	0.2	BQL
Aroclor 1242	0.2	0.3
Aroclor 1248	0.2	BQL
Aroclor 1254	0.2	BQL
Aroclor 1260	0.2	BQL
Total Aroclor Concentration	0.2	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

(a) Target compound concentration adjusted for % moisture.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons SW-846 Method 8010 Compounds

IEA Sample No.: 237130

Sample Identification: <u>TP-6A</u> May 9, 1990

Date Collected:

By: Averill

Date Analyzed: May 16, 1990

<u>Number</u>	Compound	<u>Soil</u> Quantitation Limit	Results Concentratio
MALLINET	<u>Compound</u>	<u>uq/Kq</u>	<u>uq/Kq</u>
1	Chloromethane	1.0	BQL
2	Bromomethane	1.0	BQL
3	Yinyl Chloride	1.0	BQL
4	Chloroethane	1.0	BQL
5	Methylene chloride	1.0	BQL
6	Trichlorofluoromethane	1.0	BQL
7	1,1-Dichloroethene	1.0	BQL
8	1,1-Dichloroethane	1.0	BQL
. 9	trans-1,2-Dichloroethene	1.0	BQL
10	Chloroform	1.0	BQL
11	1,2-Dichloroethane	1.0	BQL
12	1,1,1-Trichloroethane	1.0	BQL
13	Carbon tetrachloride	1.0	BQL
14	Bromodichloromethane	1.0	8QL
15	1,2-Dichloropropane	1.0	BQL
16	trans-1,3-Dichloropropene	1.0	BQL
17	Trichloroethene	1.0	BQL
18	cis-1,3-Dichloropropene	1.0	BQL
19	1,1,2-Trichloroethane	1.0	BQL
20	Chlorodibromomethane	1.0	BQL
21	2-Chloroethylvinyl ether	1.0	8QL
22	Bromoform	1.0	BQL
23	Tetrachloroethene	1.0	BQL
24	1,1,2,2-Tetrachloroethane	1.0	BQL
25	Chlorobenzene	1.0	BQL
26	1,3-Dichlorobenzene	1.0	BQL
27	1,2-Dichlorobenzene	1.0	BQL
28	1,4-Dichlorobenzene	1.0	BQL
		1.0	BQL
nents	BQL - BELOW QUANTITATION LIMIT		

Co

Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Aromatics SW-846 Method 8020 Compounds

IEA Sample No.: 237130 14
Sample Identification: TP-6A

Date Collected:

May 9, 1990

Date Analyzed: May 16, 1990

By: Averill

<u>Number</u>	Compound	Soil Quantitation Limit uq/Kq	Results Concentration uq/Kq
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1.3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

Phthalates EPR Method 606 Compounds

IEA Sample Number: 237130

14

Sample Identification: TP-6A

Date Collected: May 9, 1990

Rich

Date Extracted: May 17, 1990 Date Analyzed: May 23, 1990

Number	Compound	Soil Quantitation Limit	Results Concentration µg/Kg
1	Dimethylphthalate	µg/Kg 350	BQL
2	Diethylphthalate	350	BQL
3	Di-n-butyl phtholate	350	BQL
4	Benzyl butyl phthalate	350	BQL
5	bis(2-Ethylhexyl)phthalate	350	4100
6	Di-n-octulphthalate	350	BQL

Comments: BQL - Below Quantitation Limit

PCB Summary Sheet

IEA Sample No. 237130 14

Sample Identification TP-6A

Date Extracted May 17, 1990

Date Amalyzed May 18, 1990

By <u>Hedrick</u>

	<u>SOIL</u>	Results
	<u>Quantitation</u>	<u>Concentration</u>
Compound	<u>Limit</u>	mg/Kg
Aroclor 1016	2.0	BQL
Aroclor 1221	2.0	BQL
Aroclor 1232	2.0	BQL
Aroclor 1242	2.0	13
Aroclor 1248	2.0	BQL
Aroclor 1254	2.0	BQL
Aroclor 1260	2.0	BQL
Total Aroclor Concentration	2.0	BQL

Comments

BOL - BELOW QUANTITATION LIMIT

- (a) Target compound concentration adjusted for % moisture.
- (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons SW-846 Method 8010 Compounds

IEA Sample No.: 237130

Sample Identification: TP-6C

Date Analyzed: May 16, 1990

Date Collected: May 9, 1990 By: Averill

			<u>Soil</u> Quantitation Limit	Results Concentration
<u>Number</u>	<u>Compound</u>		μα/Κα	ца/Ка
1 .	Chloromethene	•	1.0	BQL
2	Bromomethane		1.0	BQL
3	Yinyl Chloride	:	1.0	BQL
4	Chloroethane		1.0	BQL
5	Methylene chloride		1.0	BQL
6	Trichlorofluoromethane		1.0	BQL
7	1,1-Dichloroethene		1.0	BQL
8	1,1-Dichloroethane		1.0	BQL
9	trans-1,2-Dichloroethene		1.0	BQL
10	Chleroform		1.0	BQL
11	1,2-Dichloroethane	•	1.0	BQL
12	1,1,1-Trichloroethane	:	1.0	8QL
13	Carbon tetrachloride		1.0	BQL
14	Bromodichloromethane	•	1.0	BQL
15	1,2-Dichloropropane	•	1.0	BQL
16	trans-1,3-Dichloropropene		1.0	BQL
17	Trichloroethene		1.0	BQL
18	cis-1,3-Dichloropropene		1.0	BQL
19	1,1,2-Trichloroethane		1.0	BQL
20	Chlorodibromomethane		1.0	BQL
. 21	2-Chloroethylvinyl ether	٠	1.0	8QL
22	Bromoform		1.0	BQL
23	Tetrachloroethene		1.0	BQL
24	1,1,2,2-Tetrachloroethane		1.0	BQL
25	Chlorobenzene		1.0	8QL
26	1,3-Dichlorobenzene		1.0	BQL
27	1,2-Dichlorobenzene		1.0	BQL
28	1,4-Dichlorobenzene		1.0	BQL
			1.0	BQL
omments	BQL - BELOW QUANTITATION LIM	IT		
ŀ				

Co

Purgeoble Aromatics SW-846 Method 8020 Compounds

IEA Sample No.: 237130 16 Sample Identification: TP-6C

Date Collected:

May 9, 1990

Date Analyzed: May 16, 1990

Bg: Averill

<u>Number</u>	Compound	<u>Soil</u> <u>Quantitation Limit</u> <u>uq/Kq</u>	Results Concentration uq/Kq
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	. 1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Phthalates EPA Method 606 Compounds

IER Sample Number: 237130 16

Sample Identification: TP-6C Date Collected: May 9, 1990

Date Extracted: May 17, 1990 By: Rich

Date Analyzed: May 23, 1990

Number	Compound	Soil Quantitation Limit µg/Kg	Results Concentration µg/Kg
1	Dimethylphthalate	350	BQL
2	Diethylphthalate	350 ⁻	BQL
3	Di-n-butyl phthalate	350 ·	660
4	Benzyl butyl phthalate	350:	BQL
5	bis(2-Ethylhexyl)phthalate	350	BQL
6	Di-n-octylphthalate	350 :	BQL

Comments: BQL - Below Quantitation Limit

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

PCB Symmary Sheet

IEA Sample No. <u>237130</u> <u>16</u>

Sample Identification TP-6C

Date Extracted May 17, 1990

Date Analyzed May 18, 1990

By Hedrick

	SOIL	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	mg/Kg
Aroclor 1016	20	BQL
Aroclor 1221	20	BQL
Aroclor 1232	20	BQL
Arocior 1242	20	35
Aroclor 1248	20	BQL
Aroclor 1254	20	BQL
Arocior 1260	20	BQL
Total Aroclor Concentration	20	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

- (a) Target compound concentration adjusted for % moisture.
- (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

PCB Summary Sheet

IEA Sample No. 237130

Sample Identification BF1-4

Date Extracted May 17, 1990

Date Analyzed May 18, 1990

By <u>Hedrick</u>

	SOIL	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	mg/Kg
Aroclor 1016	0.2	BQL
Aroclor 1221	0.2	BQL
Aroclor 1232	0.2	BQL
Aroclor 1242	0.2	BQL
Aroclor 1248	0.2	BQL
Aroclor 1254	0.2	BQL
Aroclor 1260	0.2	BQL
Total Aroclor Concentration	0.2	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

PCB Summary Sheet

IEA Sample No. <u>237130</u>

Sample Identification 1-4 South composite

Date Extracted May 17, 1990

Date Analyzed Mau 18, 1990

By Hedrick

	SOIL	Results
·	Quantitation	Concentration
Compound	<u>Limit</u>	mg/Kg
Aroclor 1016	20	BQL
Aroclor 1221	20	BQL
Aroclor 1232	20	BQL
Aroclor 1242	20	20
Aroclor 1248	20	BQL
Aroclor 1254	20	BQL
Aroclor 1260	20	BQL
Total Aroclor Concentration	20	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

- (a) Target compound concentration adjusted for % moisture.
- (b) Quantitation limit elevated due to sample dilution prior to analysis. (c) Sample diluted due to high concentration of target compounds present.

PCB_Summary Sheet

IEA Sample No. <u>237130</u>

Sample Identification Street Drain

Date Extracted May 17, 1990

Date Analyzed May 18, 1990

By Hedrick

	<u>Soil</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	mg/Kg
Aroclor 1016	0.2	BQL
Aroclor 1221	0.2	BQL
Aroclor 1232	0.2	BQL
Aroclor 1242	0.2	BQL
Aroclor 1248	0.2	BQL
Aroclor 1254	0.2	BQL
Aroclor 1260	0.2	BQL
Total Aroclor Concentration	0.2	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

(a) Target compound concentration adjusted for % moisture.

APPENDIX D TEST PIT WATER QUALITY DATA

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons EPA Method 601 Compounds

IEA Sample No.: <u>237130</u> <u>4</u>

Sample Identification: <u>TP1-GW</u>

Date Analyzed: May 24, 1990

By: Hendricks

Date Collected: May 9, 1990 By

Compound romethane nomethane 1 Chloride lorodifluoromethane roethane nylene chloride hlorofluoromethane - Dichloroethane - Dichloroethane s = 1,2 - Dichloroethane roform - Dichloroethane 1 - Trichloroethane ion tetrachloride modichloromethane		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	80L 80L 80L 80L 80L 80L 80L 80L
nomethane I Chloride Iorodifluoromethane roethane nylene chloride hlorofluoromethane - Dichloroethane s-1,2-Dichloroethane roform - Dichloroethane 1-Trichloroethane ion tetrachloride		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	8QL 8QL 8QL 8QL 8QL 8QL 8QL 8QL 8QL
l Chloride lorodifluoromethane roethane nylene chloride hlorofluoromethane - Dichloroethane s-1,2-Dichloroethene roform - Dichloroethane lochloroethane		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	6QL 8QL 8QL 8QL 8QL 8QL 8QL 8QL
lorodifluoromethane roethane nylene chloride hlorofluoromethane -Dichloroethene -Dichloroethane s-1,2-Dichloroethene roform -Dichloroethane 1-Trichloroethane ion tetrachloride		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	8QL 8QL 8QL 8QL 8QL 8QL 8QL
roethane nulene chloride hlorofluoromethane -Dichloroethane -Dichloroethane s-1,2-Dichloroethane roform -Dichloroethane 1-Trichloroethane ion tetrachloride		1.0 1.0 1.0 1.0 1.0 1.0 1.0	8QL 8QL 8QL 8QL 8QL 8QL
nylene chloride hlorofluoromethane -Dichloroethane -Dichloroethane s-1,2-Dichloroethane roform -Dichloroethane 1-Trichloroethane ion tetrachloride		1.0 1.0 1.0 1.0 1.0 1.0 1.0	8QL 8QL 8QL 8QL 8QL 8QL
hlorofluoromethane -Dichloroethene -Dichloroethane s-1,2-Dichloroethene roform -Dichloroethane ,1-Trichloroethane ion tetrachloride	*	1.0 1.0 1.0 1.0 1.0 1.0	8QL 8QL 8QL 8QL 8QL
-Dichloroethene -Dichloroethene s-1,2-Dichloroethene roform -Dichloroethene 1-Trichloroethene ion tetrachloride		1.0 1.0 1.0 1.0 1.0	8QL 8QL 8QL 8QL
-Dichloroethane s-1,2-Dichloroethene roform -Dichloroethane ,1-Trichloroethane ion tetrachloride	· · ·	1.0 1.0 1.0 1.0 1.0	8QL 8QL 8QL
s-1,2-Dichloroethene roform -Dichloroethane ,1-Trichloroethane ion tetrachloride		1.0 1.0 1.0 1.0	BQL BQL BQL
roform -Dichloroethane 1-Trichloroethane on tetrachloride		1.0 1.0 1.0	BQL BQL
-Dichloroethane 1-Trichloroethane ion tetrachloride	· 1.	1.0 1.0	BQL
1-Trichloroethane on tetrachloride	:.	1.0	
1-Trichloroethane on tetrachloride			
on tetrachloride		4.4	BQL
nodichloromethene		1.0	BQL
INGIVIIVI VIIKIKIIK	*	1.0	BQL
-Dichloropropane		1.0	BQL
s-1,3-Dichloropropene	•	1.0	BQL
hloroethene		1.0	BQL.
1,3-Dichloropropene	•	1.0	BQL
2-Trichloroethane		1.0	BQL
rodi bromomethane		1.0	BQL
hloroethylvinyl ether		1.0	BQL
		1.0	BQL
-Dichlorobenzene		1.0	BQL
BELOW QUANTITATION L	IMIT		
	·		·
	•		
	moform schloroethene ,2,2-Tetrschloroethane robenzene -Dichlorobenzene -Dichlorobenzene -Dichlorobenzene	noform achloroethene ,2,2-Tetrachloroethane robenzene -Dichlorobenzene -Dichlorobenzene	1.0 1.0 1.0

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: 237130 4
Sample Identification: TP1-GW

Date Collected:

May 9, 1990

Date Analyzed: May 25, 1990

By: Hendricks

		<u>Water</u> Quantitation Limit	Results Concentration
Number	Compound	ug/L	ng/L
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
. 7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

Phthalates EPA Method 606 Compounds

IEA Sample Number: 237130

Sample Identification: TP1-GW

Date Collected: May 9, 1990

Date Extracted: May 15, 1990 By: Rich

Date Analyzed: May 21, 1990

Number	Compound	water Quantitation Limit 	Results Concentration µg/L
1	Dimethylphthalate	20	BQL
2	Diethylphthalate	20	BQL
3	Di-n-butyl phthalate	20	BQL
4	Benzyl butyl phthalate	20	BQL
5	bis(2-Ethylhexyl)phthalate	20	130
6	Di-n-octylphthalate	20	BQL
0	ni_u_ncidaharagase	4 U	ed aff

Comments: BQL = Below Quantitation Limit

PCB_Summary Sheet

IEA Sample No. 237130 4
Sample Identification TP1-GW

Date Extracted May 16, 1990

Date Analyzed May 17, 1990

By <u>Hedrick</u>

	<u>Water</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	ug/L
Aroclor 1016	2.0	BQL
Aroclor 1221	2.0	BQL
Aroclor 1232	2.0	BQL
Aroclor 1242	2.0	30
Aroclor 1248	2.0	BQL
Aroclor 1254	2.0	BQL
Aroclor 1260	2.0	BQL
Total Aroclor Concentration	2.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

(a) Quantitation limit elevated due to a smaller amount of sample extracted.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons **EPA Method 601 Compounds**

IEA Sample No.: 237130

Sample Identification: TP-2GW

Date Analyzed: May 24, 1990

Date Collected:

May 9, 1990

By: Hendricks

<u>Nur</u>	nber Compound	Water Quantitation Limit μq/L	Results Concentration <u>uq/L</u>
1	Chloromethane	1.0	BQL
ž		1.0	BQL
3		1.0	BQL
2	<u> </u>	1.0	BQL
5		1.0	BQL
ě		1.0	BQL
7	· · · · · · · · · · · · · · · · · · ·	1.0	BQL
8		1.0	BQL
Š		1.0	BQL
11	•	1.0	BQL
1	· · · · · · · · · · · · · · · · · · ·	1.0	BQL
1		1.0	BQL
1		1.0	19
1		1.0	BQL
1		1.0	BQL
1	_	1.0	BQL
1	• •	1.0	BQL
1	· · · · · · · · · · · · · · · · · · ·	1.0	23
1	_	1.0	BQL
2		1.0	BQL
2	• •	1.0	BQL
2		1.0	BQL
2		1.0	BQL
2	4 Tetrachloroethene	1.0	BQL
2		1.0	BQL
2	• • •	1.0	BQL
2		1.0	BQL
. 2	•	1.0	BQL
2		1.0	BQL
Comment	BQL - BELOW QUANTITATION LIMIT		

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: 237130 5
Sample Identification: TP-2GW

Date Collected:

May 9, 1990

Date Analyzed: May 25, 1990

By: Hendricks

		<u>Water</u> Quantitation Limit	Results Concentration
<u>Number</u>	Compound	<u>μq/L</u>	<u>μq/L</u>
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

Phthalates EPA Method 606 Compounds

IER Sample Number: 237130 5

Sample Identification: TP-26W

Date Collected: May 9, 1990

Date Extracted: May 17, 1990 Date Analyzed: May 21, 1990

6

By: Rich

20

BOL

Number	Compound	Water Quantitation Limit µg/L	Results Concentration µg/L
1	Dimethylphthalate	20	BQL
2	Diethylphthalate	20	BQL
3	Di-n-butyl phthalate	20	BQL
4	Benzyl butyl phthalate	20	BQL
5	bis(2-Ethylhexyl)phthalate	20	230

Comments: BQL - Below Quantitation Limit

Di-n-octylphthalate

PCB Summary Sheet

IEA Sample No. 237130 Sample Identification TP-2GW May 16, 1990

Date Extracted

Date Analyzed May 17, 1990

Hedrick

	<u>Water</u>	Results
	Quantitation	Concentration
Compound	<u>Limit</u>	<u>μg/L</u>
Aroclor 1016	1.0	BQL
Aroclor 1221	1.0	BQL
Aroclor 1232	1.0	BQL
Aroclor 1242	1.0	5.5
Aroclor 1248	1.0	BQL
Aroclor 1254	1.0	BQL
Aroclor 1260	1.0	BQL
Total Aroclor Concentration	1.0	BQL

Co	mme	nts
----	-----	-----

BQL - BELOW QUANTITATION LIMIT

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons **EPA Method 601 Compounds**

IEA Sample No.: 237130

Sample Identification: TP-3GW

Date Collected:

May 9, 1990

Date Analyzed: May 24, 1990

By: Hendricks

<u>Number</u>	<u>Compound</u>	Water Quantitation Limit uq/L	Results Concentration uq/L
1	Chloromethane	1.0	BQL
2	Bromomethane	1.0	BQL
3	Yinyl Chloride	1.0	BQL
4	Dichlorodifluoromethane	1.0	BQL
5	Chloroethane	1.0	BQL
6	Methylene chloride	1.0	BQL
7	Trichlorofluoromethane	1.0	BQL
8	1,1-Dichloroethene	1.0	BQL
9	1,1-Dichloroethane	1.0	22
10	trans-1,2-Dichloroethene	1.0	7
11	Chloroform	1.0	BQL
12	1,2-Dichloroethane	1.0	BQL
13	1,1,1-Trichloroethane	1.0	8
14	Carbon tetrachloride	1.0	BQL
15	Bromodichloromethane	1.0	BQL
16	1,2-Dichloropropane	1.0	BQL
17	trans-1,3-Dichloropropene	1.0	8QL
18	Trichloroethene	1.0	BQL
19	cis-1,3-Dichloropropene	1.0	BQL
20	1,1,2-Trichloroethane	1.0	BQL
21	Chlorodibromomethane	1.0	BQL
22	2-Chloroethylvinyl ether	1.0	BQL
23	Bromoform	1.0	BQL
24	Tetrachloroethene	1.0	BQL
25	1,1,2,2-Tetrachloroethane	1.0	BQL
26	Chlorobenzene	1.0	8
27	1,3-Dichlorobenzene	1.0	BQL
28	1,2-Dichlorobenzene	1.0	BQL
29	1,4-Dichlorobenzene	1.0	23
Comments	BQL - BELOW QUANTITATION LIMIT		
	·	·	

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: 237130 6
Sample Identification: TP-36W

Date Collected:

May 9, 1990

Date Analyzed: May 25, 1990

Bg: Hendricks

Number	<u>Compound</u>	Water Quantitation Limit uq/L	Results Concentration uq/L
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	8
. 3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	36
6	Ethylbenzene	1.0	10
7	Toluene	1.0	48
8	Total Xylenes	1.0	79

Comments

BQL - BELOW QUANTITATION LIMIT

Phthalates EPA Method 606 Compounds

IEA Sample Number: 237130 6

Sample Identification: TP-36W

Date Collected: May 9, 1990

Date Extracted: May 17, 1990 By: Rich

Date Analyzed: May 23, 1990

Number	Compound	Water Quantitation Limit µg/L	Results Concentration µg/L
1	Dimethylphthalate	20000	BQL
2	Diethylphthalate	20000	23000
3	Di-n-butyl phthalate	20000	BQL
4	Benzyl butyl phthalate	20000	BQL
5	bis(2-Ethylhexyl)phthalate	20000	5500000
6	Di-n-octylphthalate	20000	BQL

Comments:

BQL - Below Quantitation Limit

- (a) Quantitation limit elevated due to sample dilution prior to analysis.
- (b) Sample diluted due to high concentration of target compounds present.

PCB Summary Sheet

IEA Sample No. $\underline{237130}$ 6
Sample Identification $\underline{TP-3GW}$

Date Extracted May 16, 1990 Date Analyzed May 17, 1990

By Hedrick

	<u>Water</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	ug/L
Aroclor 1016	20	BQL
Aroclor 1221	20	BQL
Aroclor 1232	20	BQL
Aroclor 1242	20	3000
Aroclor 1248	20	BQL
Arecler 1254	, 20	BQL
Aroclor 1260	20	BQL
Total Aroclor Concentration	20	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

(a) Quantitation limit elevated due to a smaller amount of sample extracted.
 (b) Quantitation limit elevated due to sample dilution prior to analysis.
 (c) Sample diluted due to high concentration of target compounds present.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons EPA Method 601 Compounds

IEA Sample No.: <u>237130</u> 9

Date Collected:

Sample Identification: $\underline{TP-5GW}$

May 9, 1990

Date Analyzed: May 24, 1990

By: Hendricks

Number	Compound	<u>Water</u> <u>Quantitation Limit</u> μg/L	Results Concentration uq/L
1 .	Chloromethane	1.0	BQL
2	Bromomethane	1.0	BQL
3	Yinyl Chloride	1.0	BQL
4	Dichlorodifluoromethane	1.0	BQL
5	Chloroethane	1.0	BQL
6	Methylene chloride	1.0	BQL
7	Trichlorofluoromethane	1.0	BQL
8	1 , 1 - Dichloroethene	1.0	BOL
9	1,1-Dichloroethane	1.0	BQL
10	trans-1,2-Dichloroethene	1.0	BQL
. 11	Chloroform	1.0	1
12	1,2-Dichloroethane	1.0	BQL
13	1,1,1-Trichloroethane	1.0	BQL
14	Carbon tetrachloride	1.0	8QL
15	Bromodichloromethane	1.0	BQL
16	1,2-Dichloropropane	1.0	BQL
17	trans-1,3-Dichloropropene	1.0	BQL
18	Trichloroethene	1.0	BQL
19	cis-1,3-Dichloropropene	1.0	BQL
20	1,1,2-Trichloroethane	1.0	BQL
21	Chlorodibromomethane	1.0	BQL
22	2-Chloroethylvinyl ether	1.0	BQL
23	Bromoform	1.0	BQL
24	Tetrachioroethene	1.0	BQL
25	1,1,2,2-Tetrachloroethane	1.0	BQL
26	Chlorobenzene	1.0	BQL
27	1,3-Dichlorobenzene	1.0	BQL
28	1,2-Dichlorobenzene	1.0	BQL
29	1,4-Dichlorobenzene	1.0	BQL
mments [BQL - BELOW QUANTITATION LIMIT		

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: $\underline{237130}$ 9 Sample Identification: $\underline{TP-5GW}$

Date Collected:

May 9, 1990

Date Analyzed: May 25, 1990

By: Hendricks

		<u>Water</u> Quantitation Limit	Results Concentration
Number	<u>Compound</u>	<u>μq/L</u>	μq/L
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

By:

Aich

Phthalates EPA Method 606 Compounds

IEA Sample Number: 237130 9

Sample Identification: TP-56W

Date Collected: May 9, 1990

Date Extracted: May 17, 1990

Compound

Date Analyzed: May 23, 1990

Number

Water Quantitation Limit µg/L	Results Concentration µg/L
--	----------------------------------

	·	µg/L	mg, c
1	Dimethylphthalate	20	BQL
2	Diethylphthalate	20	BQL
3	Di-n-butyl phthalate	20	BQL
4	Benzyl butyl phthalate	20	BQL
5	bis(2-Ethylhexyl)phthalate	20	150
6	Di-n-octylphthalate	20	BQL

Comments: BQL - Below Quantitation Limit

APPENDIX E GROUNDWATER CHEMICAL DATA

Sample Identification TP-5GW

Date Extracted May 16, 1990

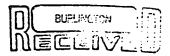
Date Analyzed May 17, 1990

By Hedrick

•	<u>Water</u>	Kesalts
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	ng/r
Aroclor 1016	20	BQL
Aroclor 1221	20	BQL
Aroclor 1232	20	BQL
Aroclor 1242	20	6.6
Aroclor 1248	20	BQL
Aroclor 1254	20	BQL
Aroclor 1260	20	BQL
Total Aroclor Concentration	20	BQL

Comments	BQL -
----------	-------

BQL - BELOW QUANTITATION LIMIT



1901 NORTH HARRISON AVE.T. CARY, N.C. 27513

PROJE				•	PROJECT NAME 7/14	rear gar	100		14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u> </u>		•	, ·	· · ·	· ·					
0027	2.01		JÄR	D. L		i i	MA MA	TRIX			10. 200	in the	REQL	JESTI	ED PA	RAM	ETER	S 15			
SAMPLER	<u> </u>	VATURE)	W. A.	1.16					堂人					/			. /	1	/	/_	
Ü	prote		* 44			OF I	%0 -	345		00 / T	3	# / · J. / ·									
SAMPLE I.D.	DATE	TIME	18	8	STATION LOCATION 7		49 周月	:uc	(0)		17 10			/	/					124	
HWIA	6/14	12130		/	A	37	多多	"	:3	3	15								7 (A)	126 198 20 320	
HN 2A	6/14	9130	7.7	/		1,7		V	3	3	1.	A S	1.W. L.							2450	
ин за	6/14	11:30	1.	1	بدار بالبهرود والا	毅		<u>* \ </u>	.3	3	1	2 m 22 10 % 2 m								1.545	
HN 38	6/13	17:00	10	1	all control of the control	Z.		N.	13	3		ale i			200				37.		
AP UN	6/13	19:15		1				2	缩	\$3	刘徽	纖	1		volve ja Parkija	1 1		100			
HW 6A	6/13	18:00		V		歌才	4	17.	3	3	1			Arris Arris A d					i wija Swija Sujero		
HW 9A	6/13	17:30		1	field black	7		1	3	3	1:	7.2		N.,			-				
											/a					:*					
-	×	pte do	h	4:	HV IA 3A 38 may have	high	1 10	ret	7 re	actor	فروي	o a									-
	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			** ****	Supplied the supplied to the s	1		1			1		4								
				W				F			1 1 1	4	•	•				73°)			·
RELINQUIS	SHED BY	/ (SIGNA)	TI IDE	31 D	ATE INSTITUTE IN THE INSTITUTE INSTITUTE IN THE INSTITUTE	3434A				1	, 40 etc.	াই		•			·	19.8% 19.7 19.7			
(bins	tw s	Word	<u> </u>	6/	ATE TIME RECEIVED 13 19:00 B A A	RA VALLE	15.50°	DAT		ME'		W IE	AQUO	TE NO				MEA	លនា	NO): (
RELINQUIS	SHED BY	(SIGNA	TURE) D/	ATE TIME RECEIVED FOR	LAB BY	1	DAY	770		PROJ	e de e de	ANAC	a.ymy	-10 - 0 p	115.74.00	Per merce				
B	A -	hops	+ 1.		17/9, 0745 and Eldred			e angles States de La Santia		- 11	B.					ILI ISI		995			200
	<u> </u>				IEA REMARKS				12						EIELD	REMAI	RKS				
pote: Dates are off. Samples labeled 6/13 were Collected 6/12 and those labeled 6/14 were collected 6/17. Chis Ward																					

July 2, 1990

JUL 2 1990

Bernie Franks Wehran Envirotech 1 Mill Street/Chace Mill Burlington, VT 05401-1532

Dear Bernie:

Transmitted herewith are the results of analyses performed on samples delivered to IEA on June 14, 1990.

Please note that the samples numbered 3 and 4 (MW-3A and MW-3B, respectively) separated into distinct oil and water phases. These phases were analyzed separately by EPA Method 601/602 and EPA Method 608 (PCBs).

If I may be of any further service, please do not hesitate to contact me.

Sincerely,

INDUSTRIAL & ENVIRONMENTAL ANALYSTS, INC.

Paul S. Warden Staff Scientist

PSW/skb

Reference: 237-165

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

LAB RESULTS

Wehran Engineering 1 Mill Street, Chace Mill Burlington, VT 05401-1532 IEA # 237165

Date Received: 6/14/90

Total Samples Received: 7

7/2/90

Date Collected: 6/13/90

Tetal Parameters Requested: 28

Attention: Bernie Franks/C. Sprague Reviewed & Approved by

Parameter Studied	Results	Comments
EPA METHOD 606 COMPOUNDS	-	See attached sheets.
EPA METHOD 606 COMPOUNDS	-	See attached sheets.
EPA METHOD 606 COMPOUNDS	-	See attached sheets.
EPA METHOD 606 COMPOUNDS	-	See attached sheets.
EPA METHOD 606 COMPOUNDS		See attached sheets.
EPA METHOD 606 COMPOUNDS	-	See attached sheets.
EPA METHOD 606 COMPOUNDS	-	See attached sheets.
GC Methods 601/602	-	See attached sheets.
GC Methods 601/602	-	See attached sheets.
GC Methods601/602	, · -	See attached sheets.
GC Methods 601/602	-	See attached sheets.
GC Methods601/602	- ,	See attached sheets.
GC Methods601/602	•	See attached sheets.
GC Methods 601/602	-	See attached sheets.
PCB in water	-	See attached sheets.
PCB in water	- ,	See attached sheets.
PCB in water	· ••	See attached sheets.
PCB in water	-	See attached sheets.
PCB in water	-	See attached sheets.
PCB in water		See attached sheets.
PCB in water	-	See attached sheets.
Zinc, total	0.214 mg/L	
Zinc, total	0.032 mg/L	
Zinc, total	3.19 mg/L	
Zinc, total	5.90 mg/L	
•		
_	EPA METHOD 606 COMPOUNDS GC Methods601/602 FCB in water PCB in water	EPA METHOD 606 COMPOUNDS GC Methods601/602 GC

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

LAB RESULTS

Wehran Engineering 1 Mill Street, Chace Mill Burlington, YT 05401-1532 IEA # 237165

Date Received: 6/14/90

Total Samples Received: 7

7/2/90

Date Collected: 6/13/90

Total Parameters Requested: 28

Attention: Bernie Franks/C. Sprague

Reviewed & Approved by

	Sample I.D.	Parameter Studied	Results	Comments	
5	MW 44	Zinc, total	0.073 mg/L		
6	MW 6A	Zinc, total	0.065 mg/L		
. 7	MW 9A	Zinc, total	<0.005 mg/L		

Comments:	-	 	 <u> </u>	
		•		
	* 1			
	1			

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons EPA Method 601 Compounds

IEA Sample No.: $\underline{237165}$ $\underline{1}$ Sample Identification: \underline{MW} 1A

Date Collected: June 13, 1990

Date Analyzed: June 21, 1990

By: Averill

	Number	<u>Compound</u>	<u>Water</u> <u>Quantitation Limit</u> <u>uq/L</u>	Results Concentration uq/L
	1	Chloromethane	1	BQL
	2	Bromomethane	i	BQL
	3	Yinyl Chloride	1	BQL
	4	Dichlorodifluoromethane	1	. BQL
	5	Chloroethane	1	BQL
	6	Methylene chloride	1	BQL
	7	Trichlorofluoromethane	1	BQL
	8	1 ,1 - Dichloroethene	1	BQL
	9	1,1-Dichloroethane	1 .	BQL
	10	trans-1,2-Dichloroethene	. 1	BQL
	11	Chloroform	1	BQL
	12	1,2-Dichloroethane	1	BQL
	13	1,1,1-Trichloroethane	1	80L
	14	Carbon tetrachloride	1	EQL
	15	Bromodichloromethane	1	BQL
	16	1,2-Dichloropropane	1	BQL
	17	trans-1,3-Dichloropropene	1	BQL
	18	Trichloroethene	1	BQL
	19	cis-1,3-Dichloropropene	1	BQL
	20	1,1,2-Trichloroethane	1	BQL
	21	Chlorodibromomethane	1	BQL
	22	2-Chloroethylvinyl ether	1	BQL
	23	Bromoform	1	BQL
	24	Tetrachloroethene	1	BQL
	25	1,1,2,2-Tetrachloroethane	1	BQL
	26	Chlorobenzene	1	BQL
	27	1,3-Dichlorobenzene	1.	BQL
	28	1,2-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	BQL
	29	1,4-Dichlorobenzene	1	BQL
Com	ments	BQL - BELOW QUANTITATION LIMIT		
	i			1.

Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: $\underline{237165}$ $\underline{1}$ Sample Identification: \underline{MW} 1A

Date Collected: Ju

June 13, 1990

Date Analyzed: June 21, 1990

By: Averill

	•	<u>Water</u> Quantitation Limit	Results Concentration
Number	<u>Compound</u>	<u>μα/L</u>	μq/L
1	Benzene	1.0	BQL
2	: Chlorobenzene	1.0	BQL
3	. 1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Phthalates EPA Method 606 Compounds

IER Sample Number: 237165

Sample Identification: MW 18 Date Collected: June 13, 1990

Date Extracted: June 20, 1990 By: Joquin

Date Analyzed: June 26, 1990

Number	Compound	Water Quantitation Limit µg/L	Results Concentration µg/L
1	Dimethylphthalate	10	BQL
2	Diethylphthalate	10	BQL
3	Di-n-butyl phthalate	10	BQL
4	Benzyl butyl phthalate	10	BQL
5	bis(2-Ethylhexyl)phthalate	10	33
6	Di-n-octylphthalate	10	BQL

Comments: BQL = Below Quantitation Limit

Sample Identification MW 1A

Date Extracted June 20, 1990

Date Analyzed June 20, 1990

By Hedrick/Travis

	<u>Water</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	<u>μg/L</u>
Aroclor 1016	1.0	BQL
Aroclor 1221	1.0	BQL
Aroclor 1232	1.0	BQL
Aroclor 1242	1.0	2.2
Aroclor 1248	1.0	8QL
Aroclor 1254	1.0	BQL
Aroclor 1260	1.0	BQL
Total Aroclor Concentration	1.0	2.2

Comments

BQL - BELOW QUANTITATION LIMIT
Water phase

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons EPA Method 601 Compounds

IEA Sample No.: $\underline{237165}$ $\underline{2}$ Sample Identification: \underline{MW} $\underline{2A}$

Date Collected: June 13, 1990

Date Analyzed: June 21, 1990

Bg: Averill

<u>Number</u>	<u>Compound</u>	Water Quantitation Limit uq/L	Results Concentration uq/L
1	Chloromethane	. 1	BQL
2	Bromomethane	1	BQL
3	Yinyl Chloride	. 1	BQL
4	Dichlorodifluoromethane	1	BQL
5	Chloroethane	1	BQL
6	Methylene chloride	1	BQL
7	Trichlorofluoromethane	1	BQL
8	1,1-Dichloroethene	1	BQL
9	1,1-Dichleroethane	1	BQL
10	trans-1,2-Dichloroethene	1	BQL
11	Chloroform	1	BQL
12	1,2-Dichloroethane	1	BQL
13	1,1,1-Trichloroethane	1	BQL
14	Carbon tetrachloride	• 1	BQL
15	Bromodichloromethane	1	BQL
16	1,2-Dichloropropane	1	BQL
17	trans-1,3-Dichloropropene	1	BQL
18	Trichloroethene	1	BQL
19	cis-1,3-Dichloropropene	1	BQL
20	1,1,2-Trichloroethane	1	BQL
21	Chlorodi bromomethane	1	BQL
22	2-Chloroethylvinyl ether	1	BQL
23	Bromoform	1	BQL
24	Tetrachloroethene	. 1	BQL
25	1,1,2,2-Tetrachloroethane	. 1 .	BQL
26	Chlorobenzene	1	BQL
27	1,3-Dichlorobenzene	1.	BQL
28	1,2-Dichlorobenzene	1	BQL
29	1,4-Dichlorobenzene	1	BQL
Comments	BQL - BELOW QUANTITATION LIMIT		

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: $\underline{237165}$ $\underline{2}$ Sample Identification: \underline{MW} $\underline{2A}$

Date Collected: June 13, 1990

Date Analyzed: June 21, 1990

By: Averill

<u>Number</u>	<u>Compound</u>	Water Quantitation Limit ug/L	Results Concentration uq/L
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Phthalates EPA Method 606 Compounds

IER Sample Number: 237165

2

Sample Identification: MW 2A

Date Collected: June 13, 1990

Date Extracted: June 20, 1990

By: Joquin

Date Analyzed: June 26, 1990

Number	Compound	Water Quantitation Limit µg/L	Results Concentration µg/L
1	Dimethylphthalate	10	BQL
2	Diethylphthalate	10	BQL
3	Di-n-butyl phthalate	10	BQL
4	Benzyl butyl phthalate	10	BQL
5	bis(2-Ethylhexyl)phthalate	10	52
6	Di-n-octylphthalate	10	BQL

Comments: BQL = Below

BQL = Below Quantitation Limit

IEA Sample No. 237165 2 Sample Identification MW 2A

Date Extracted June 20, 1990

Date Analyzed June 20, 1990

By Hedrick/Travis

•	<u>Water</u>	Results
·	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	<u>μg/L</u>
Aroclor 1016	1.0	BQL
Arocior 1221	1.0	BQL
Aroclor 1232	1.0	6QL
Aroclor 1242	1.0	9.3
Aroclor 1248	1.0	BQL
Aroclor 1254	1.0	BQL
Aroclor 1260	1.0	BQL
Total Aroclor Concentration	1.0	9.3

Comments

BQL - BELOW QUANTITATION LIMIT Water phase

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 Purgeable Halocarbons

EPA Method 601 Compounds

IEA Sample No.:

237165

Sample Identification: MW 3A

Date Analyzed: June 26, 1990

Date Collected:

June 13, 1990

By: Averill

Number	Communication	<u>Water</u> <u>Quantitation Limit</u>	Results Concentration
<u>Number</u>	<u>Compound</u>	uq/L	μq/L_
1	Chloromethane	1.0	BQL
2	Bromomethane	1.0	BQL
3	Yinyl Chloride	. 1 .0	- 3
4	Dichlorodifluoromethane	1.0	BQL
5	Chloroethane	1.0	1
6	Methylene chloride	1.0	8QL
7	Trichlorofluoromethane	1.0	BQL
8 .	1,1-Dichloroethene	1.0	BQL
9	1,1-Dichloroethane	1.0	24
10	trans-1,2-Dichloroethene	1.0	14
11 7	Chloroform	1.0	BQL
12	1,2-Dichloroethane	1.0	BQL
13	1,1,1-Trichloroethane	1.0	6
14	Carbon tetrachloride	1.0	BQL
15	Bromodichloromethane	1.0	BQL
16.	1,2-Dichloropropane	1.0	BQL
17	trans-1,3-Dichloropropene	1.0	BQL
18,	Trichloroethene	1.0	8QL
19	cis-1,3-Dichloropropene	1.0	BQL
20	1,1,2-Trichloroethane	1.0	8QL
21	Chlorodibromomethane	1.0	8QL
22	2-Chloroethylvinyl ether	1.0	BQL
23	Bromoform	1.0	BQL
24	Tetrachloroethene	1.0	BQL
25	1,1,2,2-Tetrachloroethane	1.0	8QL
26	Chlorobenzene	1.0	BOL
27	1,3-Dichlorobenzene	1.0	1
28	1,2-Dichlorobenzene	1.0	BQL
29	1 4-Dichlorobenzene	1.0	12
omments [BQL - BELOW QUANTITATION LIMIT		
	Water phase	•	
			·
	·		

Co

Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: $\underline{237165}$ 3 Sample Identification: \underline{MW} 3A

Date Collected:

June 13, 1990

Date Analyzed: June 26, 1990

Bg: Averill

Number	<u>Compound</u>	<u>Water</u> Quantitation Limit uq/L	Results Concentration uq/L
. 1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	4
5	1,4-Dichlorobenzene	1.0	17
6	Ethylbenzene	1.0	1
7.	Toluene	1.0	11
8	Total Xylenes	1.0	3

Comments

BQL - BELOW QUANTITATION LIMIT Water phase

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Phthalates EPA Method 606 Compounds

IEA Sample Number: 237165

3

Sample Identification: MW 3A Date Collected: June 13, 1990

Date Extracted: June 20, 1990

By: Joquin

Date Analyzed: June 26, 1990

Number	Compound	Water Quantitation Limit µg/L	Results Concentration µg/L
1	Dimethylphthalate	880,000	BQL
2	Diethylphthalate	880,000	BQL
3	Di-n-butyl phthalate	880,000	BQL
4	Benzyl butyl phthalate	880,000	BQL
5	bis(2-Ethylhexyl)phthalate	880,000	110,000,000
6	Di-n-octylphthalate	880,000	BQL

Comments:

BQL = **Below Quantitation Limit**

- (a) Quantitation limit elevated due to sample dilution prior to analysis.
- (b) Sample diluted due to high concentration of target compounds present.

IEA Sample No. 237165 3
Sample Identification MW 3A

Date Extracted June 20, 1990

Date Analyzed June 26, 1990

By <u>Travis</u>

	<u>Water</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	μg/L_
Aroclor 1016	75,000	BQL
Aroctor 1221	75,000	BQL
Aroclor 1232	75,000	BQL
Aroclor 1242	75,000	390,000
Aroclor 1248	75,000	BQL
Aroclor 1254	75,000	BQL
Aroclor 1260	75,000	BQL
Total Aroclor Concentration	75,000	390,000

Comments

BOL - BELOW QUANTITATION LIMIT

Water phase

Quantitation limit elevated due to sample dilution prior to analysis.

Sample diluted due to high concentration of target compounds present.

Purgeable Halocarbons EPA Method 601 Compounds

1EA Sample No.: <u>237165</u> <u>3</u>

Sample Identification: MW 3A Date Analyzed: June 26, 1990

Date Collected: June 13, 1990 By: Averill

			Results
		Quantitation Limit	Concentration
<u>Number</u>	<u>Compound</u>	ng/L	ug/L
1	Chloromethane	500	BQL -
2	Bromomethane	500	BQL
3	Yingi Chloride	500	BQL
4	Dichlorodifluoromethane	500	BQL
5	Chloroethane	500	BQL
6	Methylene chloride	500.	8QL
7	Trichlorofluoromethane	500	BQL
8	1,1-Dichloroethene	500	BQL
9	1,1-Dichloroethane	500 ⁻	2200
10	trans-1,2-Dichloroethene	500 ·	1400
11	Chloroform	500 .	BQL
12	1,2-Dichloroethane	500	BQL
13	1,1,1-Trichloroethane	500 ,	2500
14	Carbon tetrachloride	500	BQL
15	Bromodichloromethane	500	BQL
16	1,2-Dichloropropane	500	BQL
17	trans-1,3-Dichloropropene	500	BQL
18	Trichloroethene	500	BQL
19	cis-1,3-Dichloropropene	500	BQL
20	1,1,2-Trichloroethane	500	BQL
21	Chlorodibromomethane	500	BQL
22	2-Chloroethylvinyl ether	500	BQL
23	Bromoform	500	BQL
24	Tetrachloroethene	500	BQL
25	1,1,2,2-Tetrachloroethane	500	BQL
26	Chlorobenzene	500	550
27	1,3-Dichlorobenzene	500	1500
28	1,2-Dichlorobenzene	500	BQL
29	1,4-Dichlorobenzene	500	14,000

Comments

BQL - BELOW QUANTITATION LIMIT

Oil Phase.

Quantitation limit elevated due to sample dilution prior to analysis. Sample diluted due to high concentration of target compounds present.

Purgeable Aromatics EPA Method 602

IEA Semple No.: $\underline{237165}$ $\underline{3}$ Sample Identification: \underline{MW} $\underline{3A}$

Date Collected: June 13, 1990

Date Analyzed: June 26, 1990

By: Averill

;		Quantitation Limit	Results Concentration
<u>Number</u>	<u>Compound</u>	<u> pqr c</u>	μg/L_
: . 1	Benzene	500	BQL
2	Chlorobenzene	500	550
3	1,2-Dichlorobenzene	500	BQL
. 4	1,3-Dichlorobenzene	500	1500
5	1,4-Dichlorobenzene	500	14,000
6	Ethylbenzene	500	BQL
7	Toluene	500	BQL
8	Total Xylenes	500	BQL

Comments

BQL - BELOW QUANTITATION LIMIT

0il Phase.

Quantitation limit elevated due to sample dilution prior to analysis. Sample diluted due to presence of non-target compounds.

IEA Sample No. $\underline{237165}$ $\underline{3}$ Sample Identification \underline{MW} $\underline{3A}$

Date Extracted June 20, 1990

Date Analyzed June 26, 1990

By <u>Travis</u>

	<u>0i1</u>	Results
	Quantitation	<u>Concentration</u>
<u>Compound</u>	<u>Limit</u>	mg/Kg
Aroclor 1016	100	BQL
Aroclor 1221	100	BQL
Aroclor 1232	100	BQL
Aroclor 1242	100	2500
Aroclor 1248	100	BQL
Aroclor 1254	100	BQL
Aroclor 1260	100	BQL
Total Aroclor Concentration	100	2500

Comments

BQL - BELOW QUANTITATION LIMIT

Oil phase

Quantitation limit elevated due to sample dilution prior to analysis. Sample diluted due to high concentration of target compounds present.

Date Collected:

Industrial & Environmental Analysts, Inc.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138 Purgeable Halocarbons

EPA Method 601 Compounds

IEA Sample No.: <u>237165</u> <u>4</u>

Sample Identification: $\underline{MW 3B}$

June 13, 1990 B

Date Analyzed: June 26, 1990

By: Averill

		Water	Results
		Quantitation Limit	<u>Concentration</u>
<u>Number</u>	<u>Compound</u>	<u>uq/L</u>	ug/L
1	Chloromethane	1.0	BQL
2	Bromomethane	1.0	BQL
3	Yinyl Chloride	1.0	3
4	Dichlorodifluoromethane	1.0	BQL
5	Chloroethane	1.0	1
6	Methylene chloride	1.0	8QL
7	Trichlorofluoromethane	1.0	BQL
8	1,1-Dichloroethene	1.0	BQL
9	1,1-Dichloroethane	1.0	24
1.0	trans-1,2-Dichloroethene	1.0	15
11	Chloroform	1.0	1
12	1,2-Dichloroethane	1.0	BQL
13	1,1,1-Trichloroethane	1.0	7
14	Carbon tetrachloride	1.0	BQL
15	Bromodichloromethane	1.0	BQL
16	1,2-Dichloropropane	1.0	BQL
17	trans-1,3-Dichloropropene	1.0	BQL
18	Trichloroethene	1.0	BQL
19	cis-1,3-Dichloropropene	1.0	BQL
20	1,1,2-Trichloroethane	1.0	BQL
21	Chlorodibromomethane	1.0	8QL
22	2-Chloroethylvinyl ether	1.0	BQL
23	Bromoform	1.0	BQL
24	Tetrachloroethene	1.0	8QL
25	1,1,2,2-Tetrechloroethane	1.0	BQL
26	Chlorobenzene	1.0	BQL
27	1,3-Dichlorobenzene	1.0	2
28	1,2-Dichlorobenzene	1.0	8QL
29	1,4-Dichlorobenzene	1.0	16
Comments	BQL - BELOW QUANTITATION LIMIT		
	Water phase		

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: 237165 4
Sample Identification: MW 3B

Date Collected:

June 13, 1990

Date Analyzed: June 26, 1990

Bu: Averill

	<u>Water</u> Quantitation <u>Limit</u>	Results Concentration
Compound	μg/L	nd/F
Benzene	1.0	BQL
Chlorobenzene	1.01	BQL
1,2-Dichlorobenzene	1.0	6QL
1,3-Dichlorobenzene	1.0	7
1,4-Dichlorobenzene	1.0	24
Ethylbenzene	1.0	2
Toluene	1:0	13
Total Xylenes	1.0	17
	Benzene Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Ethylbenzene Toluene	Benzene 1.0 Chlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 Ethylbenzene 1.0 Toluene 1.0

Comments

BQL - BELOW QUANTITATION LIMIT
Water phase

Phthalates EPA Method 606 Compounds

IER Sample Number: 237165
Sample Identification: MW 3B
Date Collected: June 13, 1990
Date Extracted: June 20, 1990

By: Joquin

Date Analyzed: June 26, 1990

Number	Compound	Water Quantitation Limit µg/L	Results Concentration µg/L
1	Dimethylphthalate	940,000	BQL
2	Diethylphthalate	940,000	BQL
3	Di-n-butyl phthalate	940,000	BQL
4	Benzyl butyl phthalate	940,000	BQL
5	bis(2-Ethylhexyl)phthalate	940,000	98,000,000
6	Di-n-octylphthalate	940,000	BQL

Comments: BQL = Below Quantitation Limit

IEA Sample No. <u>237165</u> <u>4</u>

Sample Identification MW 3B

Date Extracted June 20, 1990

Date Analyzed June 26, 1990

By Travis

•	<u>Water</u>	Results
	Quantitation	<u>Concentration</u>
<u>Compound</u>	<u>Limit</u>	μg/L
Aroclor 1016	58,000	BQL
Aroclor 1221	58,000	BQL
Aroclor 1232	58,000	8QL
Aroclor 1242	58,000	280,000
Aroclor 1248	58,000	BQL
Aroclor 1254	58,000	BQL
Aroclor 1260	58,000	BQL
Total Aroclor Concentration	58,000	280,000

Comments

BQL - BELOW QUANTITATION LIMIT

Water phase

Quantitation limit elevated due to sample dilution prior to analysis.

Sample diluted due to high concentration of target compounds present.

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons EPA Method 601 Compounds

Date Analyzed: June 26, 1990

IEA Sample No.: <u>237165</u> <u>4</u>

Sample Identification: <u>MW 3B</u>

Date Collected: June 13, 1990 By: Averill

			0 <u>11</u>	Results
			<u>Quantitation Limit</u>	Concentration
!	<u>Number</u>	<u>Compound</u>	nd/r	uq/L
	1	Chloromethane	500	BQL
	2	Bromomethane	500	BQL
	3	Yinyl Chloride	500	BQL
	4	Dichlorodifluoromethane	500	BQL
•	5	Chloroethane	500	BQL
	6	Methylene chloride	500	BQL
	7	Trichlorofluoromethane	500	BQL
	8	1,1-Dichloroethene	500	BQL
	9	1,1-Dichloroethane	500	2100
	10	trans-1,2-Dichloroethene	500	1500
:	11	Chloroform	500	8QL
-	12	1,2-Dichloroethane	500	BQL
٠.	13	1,1,1-Trichloroethane	500	2400
	14	Carbon tetrachloride	500	BQL
ŧ	15	Bromodichloromethane	500	BQL
	16	1,2-Dichloropropane	500	BQL
	17	trans-1,3-Dichloropropene	500	BQL
	18	Trichloroethene	500	8QL
	19	cis-1,3-Dichloropropene	500	BQL
:	20	1,1,2-Trichloroethane	500	BQL
	21	Chlorodibromomethane	800	BQL
	22	2-Chloroethylvinyl ether	500	BQL
	23	Bromoform	508	BQL
	24	Tetrachloroethene	500	· BQL
	25	1,1,2,2-Tetrachloroethane	500	BQL
	26	Chlorobenzene	500	570
	27	1.3-Dichlorobenzene	500	1500
	28	1,2-Dichlorobenzene	500	BQL
	29	1,4-Dichlorobenzene	500	14,000

Comments

BQL - BELOW QUANTITATION LIMIT

- (a) Oil Phase
- (b) Quantitation limit elevated due to sample dilution prior to analysis.
- (c) Sample diluted due to high concentration of target compounds present.

Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: $\underline{237165}$ $\underline{4}$ Sample Identification: \underline{MW} 3B

Date Collected: Ju

June 13, 1990

Date Analyzed: June 26, 1990

By: Averill

		<u>Oil</u> Quantitation Limit µq/L	Results Concentration
<u>Number</u>	<u>Compound</u>	<u>ugre</u>	πd\Γ
1	Benzene	500	BQL
2	Chlorobenzene	500	720
3	1,2-Dichlorobenzene	500	BQL
. 4	1,3-Dichlorobenzene	500	10,000
5	1,4-Dichlorobenzene	500	30,000
6	Ethylbenzene	500	1,800
7	Toluene	500	8,400
8	Total Xylenes	500	16,000

Comments

BQL - BELOW QUANTITATION LIMIT

Oil phase

Quantitation limit elevated due to sample dilution prior to analysis.

Sample diluted due to high concentration of target compounds present.

IEA Sample No. <u>237165</u> 4

Sample Identification MW 3B

Date Extracted June 26, 1990

Date Analyzed June 26, 1990

By <u>Travis</u>

	<u>0i1</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	mg/Kg
Aroclor 1016	100	BQL
Aroclor 1221	100	BQL
Aroclor 1232	100	BQL
Aroclor 1242	100	3100
Aroclor 1248	100	8QL
Aroclor 1254	100	BQL
Aroclor 1260	100	6QL
Total Aroclor Concentration	100	3100

Comments

BQL - BELOW QUANTITATION LIMIT

Oil phase

Quantitation limit elevated due to sample dilution prior to analysis.

Sample diluted due to high concentration of target compounds present.

Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons **EPA Method 601 Compounds**

IEA Sample No.: 237165

Sample Identification: MW 44

Date Analyzed: June 22, 1990

June 13, 1990 By: Averill Date Collected:

Number	<u>Compound</u>		<u>Water</u> Quantitation Limit µq/L	Results Concentration ug/L
1	Chloromethane		1	BQL
2	Bromomethane		1	BQL
3	Yinul Chloride		1	BQL
4	Dichlorodifluoromethane		1	BQL
5	Chloroethane		1	BQL
6	Methylene chloride		i 1	BQL
7	Trichlorofluoromethane		1	BQL
8	1 . 1 - Dichloroethene		1	BQL
ģ	1,1-Dichloroethane		1 1	BOL
10	trans-1,2-Dichloroethene		· 1	BQL
11	Chloroform		- 1	BQL
12	1,2-Dichloroethane		1	6QL
13	1,1,1-Trichloroethane		, 1	. 4
14	Carbon tetrachloride		1	BQL
15	Bromodichloromethane	-	1.	BQL
16	1,2-Dichloropropane		1	BQL
17	trans-1,3-Dichloropropene		. 1	BQL
18	Trichloroethene		: 1	BQL
19	cis-1,3-Dichloropropene		· 1	BQL BQL
20	1,1,2-Trichloroethane		1 .	BQL
21	Chlorodibromomethane		1	BQL
22	2-Chloroethylvinyl ether		1	BQL
23	Bromoform		1	BQL
24	Tetrachloroethene		1	BQL
25	1,1,2,2-Tetrachloroethane		1	BQL
26	Chlorobenzene		t	60L
27	1,3-Dichlorobenzene			BQL
28	1,2-Dichlorobenzene	•	1	BQL
29	1,4-Dichlorobenzene		Ī	BQL
Comments	BQL - BELOW QUANTITATION LI	MIT		
			٠	

Offices and laboratories located in: Essex Junction, Vermont

Research Triangle Park, North Carolina

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: 237165 5
Sample Identification: MW 4A

Date Collected: June 13, 1990

Date Analyzed: June 22, 1990

By: Averill

		<u>Water</u> <u>Quantitation Limit</u> <u>µq/L</u>	Results Concentration
<u>Number</u>	<u>Compound</u>		nd/r
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Γ_{Λ}	m	me	nte

BQL - BELOW QUANTITATION LIMIT
Weter phase

P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Phthalates EPA Method 606 Compounds

IEA Sample Number: 237165 5
Sample Identification: MW 4A
Date Collected: June 13, 1990
Date Extracted: June 20, 1990

Date Analyzed: June 26, 1990

By: Joquin

Number	Compound	Water Quantitation Limit µg/L	Results Concentration µg/L
1	Dimethylphthalate	10	BQL
2	Diethylphthalate	10	BQL
3	Di-n-butyl phthalate	10	BQL
4	Benzyl butyl phthalate	10	BQL
5	bis(2-Ethylhexyl)phthalate	10	38
6	Di-n-octylphthalate	10	BQL

Comments: BQL = Below Quantitation Limit

IEA Sample No. $\underline{237165}$ $\underline{5}$ Sample Identification \underline{MW} $\underline{4A}$ Date Extracted June 20, 1990

Date Analyzed June 20, 1990

By Hedrick/Travis

	<u>Water</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	μg/L
Aroclor 1016	1.0	BQL
Aroclor 1221	1.0	BQL
Aroclor 1232	1.0	BQL
Aroclor 1242	1.0	23
Aroclor 1248	1.0	BQL
Aroclor 1254	1.0	BQL
Aroclor 1260	1.0	BQL
Total Aroclor Concentration	1.0	23

Comments

BQL - BELOW QUANTITATION LIMIT
Water phase

Industrial & Environmental Analysts, Inc. P.O. Box 626 • Essex Junction, Vermont 05453 • 802-878-5138

Purgeable Halocarbons **EPA Method 601 Compounds**

IEA Sample No.: 237165

Sample Identification: MW 6A

June 13, 1990 Date Collected:

Date Analyzed: June 22, 1990

By: Averill

		<u>Water</u>	Results
		Quantitation Limit	<u>Concentration</u>
<u>Number</u>	<u>Compound</u>	μq/L	μq/L_
1	Chloromethane	1	BQL
2	Bromomethane	1	BQL
3	Yingi Chloride	1	BQL
4	Dichlorodifluoromethane	1	BQL
5	Chloroethane	1	BQL
6	Methylene chloride	1	BQL
7	Trichlorofluoromethane	1	BQL
8	1 , 1 - Dichloroethene	1	BQL
g.	1,1-Dichloroethane	1	11
10	trans-1,2-Dichloroethene	1	1
11	Chloroform	1	BQL
12	1,2-Dichloroethane	1	BQL
13	1,1,1-Trichloroethane	1	6
14	Carbon tetrachloride	<u>.</u>	BQL
15	Bromodichloromethane	1	BOL
16	1,2-Dichloropropane	1	BQL
17	trans-1,3-Dichloropropene	1	BQL
18	Trichloroethene	. 1	6
19	cis-1,3-Dichloropropene	1	BQL
20	1,1,2-Trichloroethane	1	BQL
21	Chlorodibromomethane	1	BQL
22	2-Chloroethylvinyl ether	1	BQL
23	Bromoform	1	BQL
24	Tetrachloroethene	•	BQL
25	1,1,2,2-Tetrachloroethane	1·	BQL
26	Chlorobenzene	. 1	BQL
27	1,3-Dichlorobenzene	1	BQL
28	1,2-Dichlorobenzene	1	BQL
29 29	1,4-Dichlorobenzene	1	7
ments:	BQL - BELOW QUANTITATION LIMIT		٦

Research Triangle Park, North Carolina

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: $\underline{237165}$ $\underline{6}$ Sample Identification: \underline{MW} 6A

Date Collected: June 13, 1990

Date Analyzed: June 22, 1990

By: Averill

		<u>Water</u> Quantitation Limit	Results Concentration
<u>Number</u>	Compound	<u>ид/L</u>	uq/L
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	7
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT
Water phase

Phthalates EPR Method 606 Compounds

IEA Sample Number: 237165

6

Sample Identification: MW 6A

Date Collected: June 13, 1990

Date Extracted: June 20, 1990

Joquin By:

Date Analyzed: June 26, 1990

Number	Compound	Water Quantitation Limit µg/L	Results Concentration µg/L
1	Dimethylphthalate	100	BQL
2	Diethylphthalate	100	BQL
3	Di-n-butyl phthalate	100	BQL
4	Benzyl butyl phthalate	100	BQL
5	bis(2-Ethylhexyl)phthalate	100	2800
6	Di-n-octylphthalate	100	BQL

Comments: BQL - Below Quantitation Limit

IEA Sample No. <u>237165</u> <u>6</u>

Sample Identification MW 6A

Date Extracted June 20, 1990

Date Analyzed June 20, 1990

By <u>Hedrick</u>

	<u>Water</u>	Results
	Quantitation	Concentration
<u>Compound</u>	<u>Limit</u>	<u>μg/L</u>
Aroclor 1016	10.0	BQL
Aroclor 1221	10.0	BQL
Aroclor 1232	10.0	BQL
Aroclor 1242	10.0	160
Aroclor 1248	10.0	BQL
Aroclor 1254	10.0	BQL
Aroclor 1260	10.0	BQL
Total Aroclor Concentration	10.0	160

Comments

BOL - BELOW QUANTITATION LIMIT

Water phase

Quantitation limit elevated due to sample dilution prior to analysis.

Sample diluted due to high concentration of target compounds present.

Purgeable Halocarbons EPA Method 601 Compounds

IEA Sample No.: $\underline{237165}$ $\underline{7}$ Sample Identification: \underline{MW} $\underline{9A}$

Date Analyzed: June 22, 1990

Date Collected:

June 13, 1990

By: Averill

		Water_	Results
		Quantitation Limit	Concentration
<u>Number</u>	<u>Compound</u>	ng/L	<u>μq/L</u>
1	Chloromethane	. 1	BQL
2	Bromomethane	1	BQL
3	Yinyl Chloride	. 1	BQL
4	Dichlorodifluoromethane	1 -	8QL
5	Chloroethane		BQL
6	Methylene chloride	1	BQL
7	Trichlorofluoromethane	1 · · · · · · · · · · · · · · · · · · ·	BQL
8	1,1-Dichloroethene	t	BQL
9	1,1-Dichloroethane	1	BQL
10	trans-1,2-Dichloroethene	1	BQL
11	Chloroform	1	BQL
12	1,2-Dichloroethane	1	BQL
13	1,1,1-Trichloroethane	1	BQL
14	Carbon tetrachloride	1	BQL
15	Bromodichloromethane	1	BQL
16	1,2-Dichloropropane	1	BQL
17	trans-1,3-Dichloropropene	1	BQL
18	Trichloroethene	1	BQĹ
19	cis-1,3-Dichloropropene	. 1	BQL
20	1,1,2-Trichloroethane	1	BQL
21	Chlorodibromomethane	1	BQL
22	2-Chloroethylvinyl ether	1	BQL
23	Bromoform	· 1	BQL
24	Tetrachloroethene	1	BQL
25	1,1,2,2-Tetrachloroethane	1	BOL
26	Chlorobenzene	· 1	BQL
27	1,3-Dichlorobenzene	1	BQL
28	1,2-Dichlorobenzene	1	BQL
29	1,4-Dichlorobenzene	1	BQL
Comments [BQL - BELOW QUANTITATION LIMIT		7
1	·		1
1	• •		1
·-			

Purgeable Aromatics EPA Method 602 Compounds

IEA Sample No.: 237165 7
Sample Identification: MW 9A
Date Collected: June 13, 1990

Date Analyzed: June 22, 1990

By: Averill

		<u>Water</u> Quantitation Limit	Results Concentration
<u>Number</u>	Compound	<u>μq/L</u>	nd/F
1	Benzene	1.0	BQL
2	Chlorobenzene	1.0	BQL
3	1,2-Dichlorobenzene	1.0	BQL
4	1,3-Dichlorobenzene	1.0	BQL
5	1,4-Dichlorobenzene	1.0	BQL
6	Ethylbenzene	1.0	BQL
7	Toluene	1.0	BQL
8	Total Xylenes	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT Water phase

Phthalates EPA Method 606 Compounds

7

IEA Sample Number: 237165

Sample Identification: MW 9R Date Collected: June 13, 1990

Date Extracted: June 20, 1990

Date Analyzed: June 26, 1990

By: Joquin

Number	Compound	Water Quantitation Limit µg/L	Results Concentration µg/L
1	Dimethylphthalate '	100	BQL
2	Diethylphthalate	100	BQL
3	Di-n-butyl phthalate	100	BQL
4	Benzyl butyl phthalate	100	BQL
5	bis(2-Ethylhexyl)phthalate	100	26
6	Di-n-octylphthalate	100	BQL

Comments: BQL - Below Quantitation Limit

Sample Identification MW 9A

Date Extracted June 20, 1990

Date Analyzed June 20, 1990

By <u>Hedrick</u>

	<u>Water</u>	Results
	<u>Quantitation</u>	Concentration
Compound	<u>Limit</u>	<u>μg/L</u>
Aroclor 1016	1.0	BQL
Aroclor 1221	1.0	BQL
Aroclor 1232	1.0	BQL
Aroclor 1242	1.0	BQL
Aroclor 1248	1.0	BQL
Aroclor 1254	1.0	BQL
Aroclor 1260	1.0	BQL
Total Aroclor Concentration	1.0	BQL

Comments

BQL - BELOW QUANTITATION LIMIT
Water phase